Rolling bearings for textile machinery
Schaeffler Group Industrial is a leading worldwide supplier of rolling bearings, spherical plain bearings, plain bearings, linear products, accessories specific to bearings and comprehensive maintenance products and services. It has approximately 40 000 catalogue products manufactured as standard, providing an extremely wide portfolio that gives secure coverage of applications from all 60 designated industrial market sectors.

**Economical solutions for textile machinery**

Schaeffler Group Industrial offers manufacturers of textile machinery a comprehensive range of precision products for the reliable and cost-effective support of rotary and linear motion. Increasingly, there is a requirement for inventive and economical solutions that often cannot be met simply by using “off the peg” bearings. As a result, system components matched precisely as complete systems to the specific application are increasing in importance.

This development is also reflected in this publication “Rolling bearings for textile machinery”: In this publication, you will find a significantly larger number of application examples using dedicated solutions for textile machinery than in the past. Behind every one of these solutions lie many years of knowledge and experience in the textile machinery industry.

The first few pages of the publication present high quality standard bearings that reliably perform their duty in many applications. In many cases, these bearings allow highly economical solutions and are readily available.

The engineers in our application engineering and external sales functions are available to support you as a development partner worldwide. In order that your machines work more quickly, more reliably and more economically.
## Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical principles</td>
<td></td>
</tr>
<tr>
<td>Lubrication</td>
<td>4</td>
</tr>
<tr>
<td>Rolling bearings for textile machinery</td>
<td>5</td>
</tr>
<tr>
<td>Application examples</td>
<td>24</td>
</tr>
<tr>
<td>Appendix</td>
<td></td>
</tr>
<tr>
<td>Addresses</td>
<td>56</td>
</tr>
</tbody>
</table>
Technical principles

Lubrication

Caution! Lubricants undergo ageing as a result of environmental influences. The information provided by the lubricant manufacturer should be adhered to.

Schaeffler uses greases with a mineral oil base. Experience shows that these greases can be stored for up to three years.

The preconditions for storage are:

- closed room or store
- temperatures between 0 °C and +40 °C
- relative atmospheric humidity not exceeding 65%
- security against chemical agents such as vapours, gases or fluids
- sealed rolling bearings.

After a long period of storage, the start-up frictional torque of greased bearings may be temporarily higher than normal. The lubricity of the grease may also have deteriorated.

Caution! The characteristics of greases may vary, even if supplied from a single source.
# Rolling bearings for textile machinery

## Product overview

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolling bearings for textile machinery</td>
<td>6</td>
</tr>
</tbody>
</table>

## Features

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle neck bearings</td>
<td>7</td>
</tr>
<tr>
<td>Tape tension pulleys and pulley bearings</td>
<td>8</td>
</tr>
<tr>
<td>Tape tension pulleys</td>
<td>8</td>
</tr>
<tr>
<td>Pulley bearings</td>
<td>8</td>
</tr>
<tr>
<td>Application</td>
<td>8</td>
</tr>
<tr>
<td>Thread guidance rollers</td>
<td>8</td>
</tr>
<tr>
<td>Speeds</td>
<td>10</td>
</tr>
<tr>
<td>Drawn cup needle roller bearings for weaving machines</td>
<td>11</td>
</tr>
<tr>
<td>Particularly low cross-section height</td>
<td>12</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>12</td>
</tr>
<tr>
<td>Cages</td>
<td>12</td>
</tr>
</tbody>
</table>

## Design and safety guidelines

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle neck bearings</td>
<td>7</td>
</tr>
<tr>
<td>Tape tension pulleys and pulley bearings</td>
<td>9</td>
</tr>
<tr>
<td>Sealing</td>
<td>9</td>
</tr>
<tr>
<td>Lubrication</td>
<td>9</td>
</tr>
<tr>
<td>Thread guidance rollers</td>
<td>11</td>
</tr>
<tr>
<td>Lubrication</td>
<td>11</td>
</tr>
<tr>
<td>Drawn cup needle roller bearings for weaving machines</td>
<td>13</td>
</tr>
<tr>
<td>Raceway for bearings without inner ring</td>
<td>13</td>
</tr>
<tr>
<td>Static load safety factor</td>
<td>13</td>
</tr>
<tr>
<td>Radial location</td>
<td>13</td>
</tr>
<tr>
<td>Installation with fitting mandrel</td>
<td>14</td>
</tr>
</tbody>
</table>

## Accuracy

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle neck bearings</td>
<td>7</td>
</tr>
<tr>
<td>Drawn cup needle roller bearings for weaving machines</td>
<td>15</td>
</tr>
<tr>
<td>Enveloping circle</td>
<td>15</td>
</tr>
</tbody>
</table>

## Dimension tables

<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spindle neck bearings</td>
<td>16</td>
</tr>
<tr>
<td>Tape tension pulleys</td>
<td>17</td>
</tr>
<tr>
<td>Pulley bearings</td>
<td>18</td>
</tr>
<tr>
<td>Tape tension pulleys and pulley bearings, special designs</td>
<td>20</td>
</tr>
<tr>
<td>Bearings for weaving machines</td>
<td>22</td>
</tr>
<tr>
<td>Bearings for heald frame drive</td>
<td>22</td>
</tr>
</tbody>
</table>
### Product overview

#### Rolling bearings for textile machinery

<table>
<thead>
<tr>
<th>Product</th>
<th>SPL</th>
<th>SPL</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Spindle neck bearings</strong></td>
<td></td>
<td></td>
</tr>
<tr>
<td>With separate end washer, type 1</td>
<td>119 165</td>
<td></td>
</tr>
<tr>
<td>With double rib, type 2</td>
<td></td>
<td>119 299</td>
</tr>
<tr>
<td><strong>Tape tension pulleys and pulley bearings</strong></td>
<td>BSR</td>
<td>RLBSR..-100</td>
</tr>
<tr>
<td><strong>Thread guidance rollers</strong></td>
<td>FRM</td>
<td>FRM</td>
</tr>
<tr>
<td><strong>Drawn cup needle roller bearings for weaving machines</strong></td>
<td>HK</td>
<td></td>
</tr>
</tbody>
</table>

---

**Note:** For detailed specifications and ordering information, please refer to the Schaeffler Group Industrial manual.
Spindle neck bearings

**Features**
Spindle neck bearings are cylindrical roller bearings with very high load carrying capacity for the radial guidance of spinning and twisting spindles. They allow high speeds.

The cylindrical rollers are guided in spindle neck bearings by
- a separate end washer for an inside diameter of 10 mm
- a double rib for an inside diameter of 12 mm.

**Design and safety guidelines**

**Lubrication**
Spindle neck bearings are lubricated using oil. Good results have been obtained using oils CLP to DIN 51 517 with ISO-VG 10 to ISO-VG 46. Spindle neck bearings are supplied coated with a preservative.

**Caution!**
If grease lubrication is to be used, consultation with the INA engineering service is required in order to determine the speeds and grease type.

**Accuracy**
The table shows recommended mounting tolerances.

<table>
<thead>
<tr>
<th>Mounting tolerances</th>
<th>Housing</th>
<th>Shaft</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N7</td>
<td>J5</td>
</tr>
</tbody>
</table>
Tape tension pulleys and pulley bearings

Features

Tape tension pulleys
Tape tension pulleys BSR are high precision ball bearings with one or two rows of rolling elements. The outer ring half-cups are made from sheet steel. Due to their low mass moment of inertia, the spindles can be rapidly accelerated up to operating speed. Friction is low due to the use of gap seals. The pulleys are matched to the normal belt dimensions and mounting conditions.

Pulley bearings
Pulley bearings RLBSR..-100 are high precision ball bearings with one or two rows of rolling elements. Due to their low mass moment of inertia, the spindles can be rapidly accelerated up to operating speed. Friction is low due to the use of gap seals. Pulley bearings RLBSR..-100 are also suitable for the design of tape tension pulleys that require special tyres.

Application
Tape tension pulleys are used to guide and tension the drive belts in textile machinery, especially in spinning, texturing and twisting machines.
Design and safety guidelines

Sealing
On the pin side, the pulleys have a gap seal.
On the outer side, the pulleys are sealed by a spring diaphragm.
The lubrication hole is located at the centre of the diaphragm.

Lubrication
Tape tension pulleys and pulley bearings have an initial greasing of grease K3K–30 to DIN 51 825. This grease is a lithium soap grease with a mineral oil base and has a base oil viscosity of ISO-VG 100.

Relubrication
The grease used for relubrication should be the same as that used for the initial greasing. The pulleys are relubricated via a lubrication hole in the fixing screw or via the lubrication hole in the end washer. For this lubrication hole, a metering gun with a tapered nozzle should be used, Figure 1.

Figure 1
Tapered nozzle

The bearing should be rotated by hand in order to ensure uniform distribution of the grease.
The relubrication quantity is:
- 0,5 g to 0,8 g for single row bearings
- 1,0 g to 1,5 g for double row bearings.
The guide values for relubrication intervals in operating hours are:
- approx. 30 000 h with little fly
- approx. 12 000 h with heavy fly.
For information on the storage life of lubricants, see Technical principles, Lubrication, page 4.
Thread guidance rollers

**Features**
Thread guidance rollers have an outside surface with hard chromium plating. They run extremely easily and are therefore used in spooling, twisting and texturing machines.

**Speeds**
The maximum permissible speed is 5 000 min⁻¹ for thread guidance roller F-87530.5, *Figure 1* and 22 500 min⁻¹ for thread guidance roller F-558472, *Figure 2*.

*Figure 1*
Thread guidance roller FRM

*Figure 2*
Thread guidance roller FRM (separator roller)
Thread guidance rollers with the ordering designation F-87530.5, see Figure 1, page 10, are greased for life with a lithium complex soap grease. There is no relubrication facility.

Thread guidance rollers with the ordering designation F-558472, see Figure 2, page 10, must be relubricated after 4 000 h. A conventional syringe is used to press in 0.2 ml of oil to DIN 51 502 through the depression in the sealing washer. In order to ensure uniform distribution of the lubricant into the front and rear rows of balls, the thread guidance roller should be set vertical by approx. 30 angular minutes. The pin must face downwards.

For information on the storage life of lubricants, see Technical principles, Lubrication, page 4.
## Drawn cup needle roller bearings for weaving machines

### Features

Drawn cup needle roller bearings are units comprising thin-walled, formed outer rings with needle roller and cage assemblies. They conform to DIN 618-1/ISO 3 245 and are available for shafts from 40 mm to 70 mm.

Drawn cup needle roller bearings HK are not sealed on either side.

### Particularly low cross-section height

Due to the thin-walled outer cup and the design without an inner ring, drawn cup needle roller bearings have extremely small radial dimensions. They have high load carrying capacity, are suitable for high speeds and are particularly easy to fit. If axial location by shoulders, snap rings etc. is not used, the housing bore can be produced easily and particularly economically.

However, drawn cup needle roller bearings require a shaft raceway that is hardened and ground. If the shaft cannot be used as a raceway, they can be combined with inner rings IR or LR. For suitable inner rings, see Catalogue HR1, Rolling Bearings.

### Operating temperature

Drawn cup needle roller bearings without seals can be used at operating temperatures up to +140 °C.

### Cages

Drawn cup needle roller bearings for weaving machines have sheet steel cages.
Design and safety guidelines

Raceway for bearings without inner ring

Where bearings without an inner ring are to be used, the rolling element raceway on the shaft must be hardened and ground. The surface hardness of the raceway must be at least 670 HV, the hardening depth CHD or Rht must be sufficiently large. Shaft and housing design: see the table and the section Design of bearing arrangements, Catalogue HR1, Rolling Bearings.

Caution!

In order to utilise the load carrying capacity of the bearings to the full, rigid support must be provided for the thin-walled outer ring. Note the recommended bore tolerances in the table.

Tolerances for the shaft raceway/housing bore

<table>
<thead>
<tr>
<th>Housing material</th>
<th>Shaft tolerance for bearings without inner ring</th>
<th>Bore tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steel or cast iron</td>
<td>h6</td>
<td>N6</td>
</tr>
<tr>
<td>Light metal</td>
<td>Al</td>
<td>R6</td>
</tr>
<tr>
<td></td>
<td>Mg</td>
<td>S6</td>
</tr>
</tbody>
</table>

Surface for shaft raceway/housing bore

<table>
<thead>
<tr>
<th>Surface quality</th>
<th>Shaft raceway for bearings without inner ring</th>
<th>Housing bore</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roughness max.</td>
<td>$R_{0.2}$ ($R_{1}$)</td>
<td>$R_{0.8}$ ($R_{4}$)</td>
</tr>
<tr>
<td>Roundness</td>
<td>IT 3</td>
<td>IT 5/2</td>
</tr>
<tr>
<td>Parallelism</td>
<td>IT 3</td>
<td>IT 5/2</td>
</tr>
</tbody>
</table>

Static load safety factor

$$S_0 = \frac{C_{Or}}{P_0}$$

- $S_0$: Static load safety factor
- $C_{Or}$: Basic static load rating according to dimension tables
- $P_0$: Equivalent static bearing load.

Caution!

In order to achieve sufficiently smooth running, a static load safety factor $S_0 \geq 3$ is necessary.

Radial location

Drawn cup needle roller bearings are pressed into the housing bore and require no further axial location.
**Drawn cup needle roller bearings for weaving machines**

**Installation with fitting mandrel**

The bearings should be installed using a special fitting mandrel, *Figure 1*. The shoulder of the fitting mandrel should rest on the bearing end face marked with the designation.

A toroidal ring ① for retention of the bearing must be provided. The length and oversize of the toroidal ring must be matched by the customer to the dimensions and mass of the bearing.

Before installation, the bearings should be lubricated with grease, if grease lubrication is to be used.

**Caution!**

Drawn cup bearings should not be tilted during fitting. Forces occurring during the fitting process are dependent on several variables. The fitting situation should be arranged so that the bearing rib on the end face is not deformed.

*Figure 1*

*Installation using a fitting mandrel*
**Accuracy**

The main dimensions of the bearings conform to DIN 618/ISO 3 245.

The thin-walled outer rings adapt to the dimensional and geometrical accuracy of the housing bore.

**Enveloping circle**

In the case of bearings without an inner ring, the dimension for the enveloping circle $F_w$ is used instead of the radial internal clearance.

The enveloping circle is the inner inscribed circle of the needle rollers in clearance-free contact with the outer raceway.

Once the bearings are fitted, the enveloping circle $F_w$ is approximately in tolerance zone F8 (assuming bore tolerances according to table Tolerances for the shaft raceway/housing bore, page 13).

The enveloping circle is determined on the basis of the inspection dimensions in the table.

**Caution!**

Bearings intended for enveloping circle measurement should not be repeatedly pushed in and out of the gauge. Bearings which have been checked in the ring gauge should not be used again.

---

**Inspection dimensions for drawn cup needle roller bearings**

<table>
<thead>
<tr>
<th>Enveloping circle diameter</th>
<th>Bearing outside diameter</th>
<th>Ring gauge bore Actual dimension</th>
<th>Enveloping circle diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>$F_w$ mm</td>
<td>$D$ mm</td>
<td>mm</td>
<td>mm</td>
</tr>
<tr>
<td>40</td>
<td>47</td>
<td>46,972</td>
<td>+50</td>
</tr>
<tr>
<td>45</td>
<td>52</td>
<td>51,967</td>
<td>+50</td>
</tr>
<tr>
<td>50</td>
<td>58</td>
<td>57,967</td>
<td>+50</td>
</tr>
<tr>
<td>55</td>
<td>63</td>
<td>62,967</td>
<td>+60</td>
</tr>
<tr>
<td>60</td>
<td>68</td>
<td>67,967</td>
<td>+60</td>
</tr>
<tr>
<td>70</td>
<td>78</td>
<td>77,967</td>
<td>+60</td>
</tr>
</tbody>
</table>

Upper deviation $\mu$m, Lower deviation $\mu$m

+25, +25, +30, +30
Spindle neck bearings

![SPL Type 1](image1.png)

![SPL Type 2](image2.png)

### Dimension table - Dimensions in mm

<table>
<thead>
<tr>
<th>Designation</th>
<th>Type</th>
<th>Mass m =g</th>
<th>Dimensions</th>
<th>Basic load ratings</th>
<th>Limiting speed (^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fw</td>
<td>D</td>
<td>D1</td>
</tr>
<tr>
<td>SPL10.22</td>
<td>2</td>
<td>13,5</td>
<td>10</td>
<td>22</td>
<td>–</td>
</tr>
<tr>
<td>SPL12.24</td>
<td>1</td>
<td>19,5</td>
<td>12</td>
<td>24</td>
<td>23,95</td>
</tr>
</tbody>
</table>

\(^1\) Limiting speed for oil lubrication.
## Tape tension pulleys

**BSR61**

**BSR51, BSR71**

**BSR72**

### Dimension table - Dimensions in mm

<table>
<thead>
<tr>
<th>Designation</th>
<th>Mass ( m ) in g</th>
<th>Dimensions</th>
<th>Limiting speed ( n_G ) in min(^{-1} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>BSR51</td>
<td>133</td>
<td>50 25</td>
<td>8 000</td>
</tr>
<tr>
<td>BSR61</td>
<td>133</td>
<td>60 25</td>
<td>8 000</td>
</tr>
<tr>
<td>BSR71</td>
<td>155</td>
<td>70 25</td>
<td>8 000</td>
</tr>
<tr>
<td>BSR72</td>
<td>170</td>
<td>70 32</td>
<td>8 000</td>
</tr>
<tr>
<td>BSR720</td>
<td>203</td>
<td>70 32</td>
<td>15 000</td>
</tr>
<tr>
<td>BSR73</td>
<td>241</td>
<td>70 45</td>
<td>15 000</td>
</tr>
</tbody>
</table>

1) Limiting speed for grease lubrication.
### Dimension table - Dimensions in mm

<table>
<thead>
<tr>
<th>Designation</th>
<th>Mass ( m )</th>
<th>Dimensions</th>
<th>Basic load ratings</th>
<th>Limiting speed(^1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RLBSR71-100</td>
<td>55</td>
<td>23 ( B ) 16 ( B_1 )</td>
<td>4 050 ( C ) 1 980 ( C_0 )</td>
<td>8 000 ( n_G ) min(^{-1} )</td>
</tr>
<tr>
<td>RLBSR73-100</td>
<td>104</td>
<td>39,5 ( B ) 26 ( B_1 )</td>
<td>6 200 ( C ) 3 950 ( C_0 )</td>
<td>15 000 ( n_G ) min(^{-1} )</td>
</tr>
</tbody>
</table>

\(^1\) Limiting speed for grease lubrication.

---

**Pulley bearings**

![RLBSR71-100 diagram](image)

**RLBSR71-100**

---

![RLBSR73-100 diagram](image)

**RLBSR73-100**
## Dimension table - Dimensions in mm

<table>
<thead>
<tr>
<th>Designation</th>
<th>Mass m =g</th>
<th>Dimension D</th>
<th>Belt width</th>
<th>Basic load ratings</th>
<th>Limiting speed&lt;sup&gt;1)&lt;/sup&gt;</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>dyn. C N</td>
<td>stat. C₀ N</td>
</tr>
<tr>
<td>F-229181.01</td>
<td>20</td>
<td>15</td>
<td>20</td>
<td>2 900</td>
<td>1 350</td>
</tr>
<tr>
<td>F-80491</td>
<td>55</td>
<td>28</td>
<td>14</td>
<td>4 050</td>
<td>1 980</td>
</tr>
<tr>
<td>F-201997</td>
<td>100</td>
<td>40</td>
<td>22</td>
<td>6 200</td>
<td>3 950</td>
</tr>
<tr>
<td>F-56202</td>
<td>84</td>
<td>42</td>
<td>30</td>
<td>4 050</td>
<td>1 980</td>
</tr>
<tr>
<td>F-50230</td>
<td>202</td>
<td>50</td>
<td>30</td>
<td>6 200</td>
<td>3 950</td>
</tr>
<tr>
<td>F-56618</td>
<td>167</td>
<td>50</td>
<td>21</td>
<td>6 200</td>
<td>3 950</td>
</tr>
<tr>
<td>F-238287</td>
<td>330</td>
<td>50</td>
<td>26</td>
<td>14 800</td>
<td>9 600</td>
</tr>
<tr>
<td>F-207228</td>
<td>500</td>
<td>69</td>
<td>28</td>
<td>8 800</td>
<td>6 600</td>
</tr>
<tr>
<td>F-211420</td>
<td>560</td>
<td>69</td>
<td>42</td>
<td>8 800</td>
<td>6 600</td>
</tr>
<tr>
<td>F-201995</td>
<td>199</td>
<td>70</td>
<td>32</td>
<td>6 200</td>
<td>3 950</td>
</tr>
</tbody>
</table>

<sup>1)</sup> Limiting speed for grease lubrication.
### Bearings for weaving machines

Bearings for heald frame drive

#### Dimension table - Dimensions in mm

<table>
<thead>
<tr>
<th>Designation</th>
<th>Mass (m)</th>
<th>Dimensions</th>
<th>Basic load ratings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(g)</td>
<td>(F_w)</td>
<td>(D)</td>
</tr>
<tr>
<td>HK4012</td>
<td>30</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>HK4512</td>
<td>33</td>
<td>45</td>
<td>52</td>
</tr>
<tr>
<td>F-33412</td>
<td>45</td>
<td>50</td>
<td>58</td>
</tr>
<tr>
<td>HK6012</td>
<td>49</td>
<td>60</td>
<td>68</td>
</tr>
<tr>
<td>F-229134</td>
<td>69</td>
<td>70</td>
<td>78</td>
</tr>
</tbody>
</table>

For further sizes, see Catalogue HR1, Rolling Bearings.
Application examples

<table>
<thead>
<tr>
<th>Fibre processing in a carding machine</th>
<th>Requirements</th>
<th>26</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Design solution</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>27</td>
</tr>
<tr>
<td>Flyer</td>
<td>Requirements</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>29</td>
</tr>
<tr>
<td>Rotor spinning machine</td>
<td>Requirements</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>31</td>
</tr>
<tr>
<td>Twisting machine</td>
<td>Requirements</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>33</td>
</tr>
<tr>
<td>Spinning line</td>
<td>Requirements</td>
<td>34</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>35</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>35</td>
</tr>
<tr>
<td>Production of synthetic fibres</td>
<td>Requirements</td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>37</td>
</tr>
<tr>
<td>Chuck shaft</td>
<td>Requirements</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>39</td>
</tr>
<tr>
<td>Machine</td>
<td>Requirements</td>
<td>Page</td>
</tr>
<tr>
<td>--------------------------</td>
<td>--------------------------------------------------</td>
<td>------</td>
</tr>
<tr>
<td>Texturing machine</td>
<td>Design solution</td>
<td>41</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>42</td>
</tr>
<tr>
<td>Weaving machine</td>
<td>Requirements</td>
<td>44</td>
</tr>
<tr>
<td>Rapier drive</td>
<td>Design solution</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>45</td>
</tr>
<tr>
<td>Weaving machine</td>
<td>Requirements</td>
<td>46</td>
</tr>
<tr>
<td>Lay drive</td>
<td>Design solution</td>
<td>47</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>47</td>
</tr>
<tr>
<td>Weaving machine</td>
<td>Requirements</td>
<td>48</td>
</tr>
<tr>
<td>Heald frame drive bearing</td>
<td>Design solution</td>
<td>49</td>
</tr>
<tr>
<td>arrangements</td>
<td>Schaeffler Group products used</td>
<td>49</td>
</tr>
<tr>
<td>Needle felting machine</td>
<td>Requirements</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>51</td>
</tr>
<tr>
<td>Impregnating machine</td>
<td>Requirements</td>
<td>52</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>53</td>
</tr>
<tr>
<td>Embroidery machine</td>
<td>Requirements</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Design solution</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Schaeffler Group products used</td>
<td>55</td>
</tr>
</tbody>
</table>
Fibre processing in a carding machine

Fibres that are still disordered are processed in high performance revolving flat cards to form a strip for drafting arrangements or direct spinning machines. Such cards lay the disordered cotton and synthetic fibres parallel to each other. Fibres that are too short are separated out and contaminant particles are removed.

The card is fed with fibres of differing origin and various materials. Several million card clothing points on the roll known as a carding cylinder separate the disordered fibres and lay them parallel.

A further roll, the stripper roll, also has several million card teeth. The stripper roll rotates more slowly than the carding cylinder. As a result, the stripper roll draws the fibres off the carding cylinder as nonwoven tissue.

Pinch rolls transport the nonwoven tissue uniformly onward and guide it to the funnel. Calender rolls ensure compaction of the strip so that it can be deposited in an ordered manner in the can. In the can, the strip is conveyed for further processing.

![High performance revolving flat card](image)

**Figure 1**

High performance revolving flat card

**Requirements**

A carding cylinder with card points runs at a circumferential speed of approx. 26 m/s. The nonwoven tissue must be guided at this speed over the stripper rolls, pinch rolls and calender rolls into the can.

The calender rolls run at a speed of up to 2 000 min\(^{-1}\). The requirement is for maintenance-free running for 40 000 h. In spite of this requirement, the bearing arrangement must run smoothly and precisely.
Design solution

The Schaeffler Group has developed an optimised roll bearing arrangement for this task. It achieves the required values and is a compact unit.

The calender roll comprises a double row ball bearing arrangement in which the balls run directly on the shaft of the bearing arrangement. The roll is pushed on the shaft of the compact unit. The roll is clamped on one side using a locking collar. The gear on the opposite side to the drive is located by means of a feather key and screw.

Figure 2
Roll bearing arrangement

Schaeffler Group products used

Special ball bearing LWTX.
Flyer

High quality roving makes a major contribution to the problem-free running of ring spinning machines. A flyer is therefore used to process a uniform sliver to produce roving with the necessary characteristics, see Figure 3.

Figure 3
Flyer

Requirements
The drafting arrangement and flyer are the principal components of the flyer spinning frame. As a first step, the sliver is stretched. Then the flyer twists the sliver to produce roving for the ring spinning machine. The flyer spinning frame rotates at approx. 1800 min⁻¹. The bearings are subjected to high centrifugal forces but must nevertheless run smoothly and accurately. It is only in this way that roving of sufficiently high quality can be produced.
**Design solution**

The Schaeffler Group special ball bearing, containing ball and cage assemblies at a relatively large distance from each other, supports the high forces. Furthermore, the operating clearance of the bearing has been restricted. These measures ensure smooth running and thus high quality roving.

The ball bearing is lubricated for life and has highly effective sealing against dust and fly. Since the complete bearing arrangement of the flyer consists of this one bearing only, it is easy to fit.

**Schaeffler Group products used**

1. Special ball bearing KLB.

**Figure 4**
Flyer bearing arrangement

**Figure 5**
Detail: Flyer bearing arrangement
Rotor spinning machine

Turning fibres into yarn: rotor spinning is a particularly effective technique for this task. The opening roller separates the fibres which are then transported to the rotor. The rotor twists the fibres about each other, producing the yarn.

Figure 6
Rotor spinning machine

Requirements

The rotor is driven by a flat belt. A tape tension pulley pressures the belt against the rotor shaft. The shaft is supported on four large pulleys in the indirect rotor bearing arrangement. The speeds are high: 150 000 min\(^{-1}\) at the rotor, 15 000 min\(^{-1}\) to 21 000 min\(^{-1}\) at the bearings and rolls.

At these high speeds, small masses and low-friction running are essential. Vibrations will impair the quality of the yarn produced, so the bearings and rolls must run smoothly.

Design solution

The opening roller and wharve are pressed onto a double row special ball bearing. The restricted axial and radial internal clearance give smooth, quiet running. Due to the large spacing between the two rows of balls, the bearing in the opening cylinder can support high loads. It is reliably protected against fibres by two sheet metal seals.

A double row special ball bearing is also fitted in the Schaeffler Group tape tension pulley. The pulley is pressed onto the shaft. In order to ensure quiet running of the tape tension pulley at 21 000 min\(^{-1}\), it is dynamically balanced.

The special ball bearing in the indirect rotor bearing arrangement has protruding shaft ends on both sides. The support pulleys are pressed onto these ends. The radial runout must be close to zero once they are pressed on. In this case, extremely smooth running of the rotor is ensured.
Schaeffler Group products used

1. Special ball bearing LWTX for opening roller
2. Tape tension pulley BSR in the rotor drive
3. Indirect rotor bearing arrangement RTL.
Twisting machine

In the spindles of the twisting machine, two yarns are twisted together. The resulting doubled yarn is of higher quality and strength than a single yarn. The spindle on the wharve is driven by a flat belt that is pressed against the wharve by a tape tension pulley.

Requirements

The bearing arrangements and the spindle and tape tension pulley must run with very high precision and very little noise. The smaller the diameter of the wharve that can be achieved, the more slowly and quietly the belt can run.
**Design solution**

Schaeffler Group manufactures the spindle, including the ball bearings, flange, housing and wharve, as a unit. The raceways of the bearing are ground directly on the shaft and the outer ring. This gives a small outside diameter of the bearing and wharve – the belt runs quietly and at low speed.

The light tape tension pulley has a profiled running surface and thus holds the bearing in the centre. The dynamic imbalance of the plastic pulley is minimised by design measures.

These two precision elements contribute to achieving a high quality twisted yarn and quiet machine running.

![Spindle bearing arrangement](image)

**Figure 11**

Spindle bearing arrangement

**Schaeffler Group products used**

1. Spindle unit LWTX
2. Tape tension pulley BSR.
Mountain climbers, hikers, runners and even walkers – everyone is now looking for practical clothing. Light yet robust, waterproof but breathable, clothing made from contemporary materials has displaced cotton, leather and other time-honoured materials. Such clothing is woven from fully drawn synthetic filament yarns. These yarns are produced on spinning and drawing lines. These lines carry out four process operations: they start with granulate feed and progress through melting and homogenising of the polymer melt. The further steps are spinning and drawing, after which the winders spool the yarn.

Drawing of the yarns ensures high strength and good mechanical characteristics. Once the polymer chains are spun, they are present in a disordered state in the unstretched filament and their strength is not adequate for direct further processing.

**Figure 12**
Spinning and drawing line

**Requirements**

The spun yarns are guided via several godets. Since the following godet always rotates more quickly than the previous one, the yarns are drawn to a multiple of their original length. The molecular chains are aligned to the axis of the fibres and the mechanical characteristics of the fibres are realised. The extent to which the threads are stretched can be adjusted by the ratio of the godet speeds to each other.

High speeds are required in the godet bearing arrangement together with smooth and uniform running. This has a direct effect on the quality of the drawn yarns. Furthermore, the bearing arrangement must withstand different temperatures since the godets run cold or hot depending on the filament.
**Design solution**

The godet shaft rotates in two deep groove ball bearings. These bearings are fitted in an X arrangement and are preloaded. The design gives high precision guidance of the godet shaft and prevents vibrations. In this way, it is ensured that the stretched yarn is of the required quality. If the godets run hot, the bearing arrangement must be matched to the higher operating temperatures. The bearing components undergo heat treatment and a high temperature grease is used.

A spring preload system ensures optimum contact between the rolling elements and raceways under all operating conditions. It also allows length compensation at the non-locating bearing, which is mounted with a push fit on the outer ring.

The bearings are sealed and greased for life with a high temperature grease.

![Godet with deep groove ball bearings](image)

**Schaeffler Group products used**

1. Special ball bearing F-6013-2ZR-C4-L237.

*Figure 13*  
Godet with deep groove ball bearings
Production of synthetic fibres

The dimensions of the production line for producing synthetic fibres from a polymer melt are enormous: over a length of 100 m, synthetic staple fibres are produced, from the spinning stage to the packed fibre.

The significant process operations are spinning, stretching, thermofixing, crimping, cutting and pressing. On its passage along the line, the melt is transformed into a fibre in textile form. This fibre can then be spun either alone or mixed with natural fibres.

Once the melt has been spun through very fine nozzles into filaments, several of these thin filaments are gathered into one yarn. Several such yarns give a fibre cable.

The cables produced in this way must then be refined. This means above all that they must have sufficient strength before they can be processed in the textile industry.

The first refining station on the fibre line is the drafting arrangement. The fibre cables are drawn between heatable drafting rolls. The molecular structure of the filaments is aligned in this way and the fibres acquire the necessary strength.

**Requirements**

The fibre cable must be laid easily and quickly on the drafting roll, the so-called godet. Misalignments occur at the bearing position. The godet is deflected as a result of the drive force, drafting force and weight. The roll heats up during operation, making length compensation necessary in the bearing arrangement.

**Operating data**

<table>
<thead>
<tr>
<th>Operating data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>min⁻¹</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
</tbody>
</table>

![Production of synthetic fibres](image)
**Design solution**

The godets are supported in a floating arrangement which simplifies usability when laying the cable. Spherical roller bearings are selected since they are able to compensate misalignments. Spherical roller bearings also support the high forces that occur during drafting. In order to prevent the occurrence of stresses due to elongation at higher temperatures, the bearing arrangement comprises a locating bearing and a non-locating bearing. The non-locating bearing compensates for the elongation.

![Diagram of godet bearing arrangement](image)

**Schaeffler Group products used**

1. Spherical roller bearing with cylindrical bore 23176-MB-C3
2. Spherical roller bearing with tapered bore 23188-K-MB-C3
3. Extraction sleeve for hydraulic mounting AHX3188-H

*Figure 15*

Godet bearing arrangement
Clothing made from synthetic fibres, which is robust and waterproof yet breathable, has displaced time-honoured materials. The machines for synthetic fibre production are therefore increasing in importance compared to machines working with natural fibres. For synthetic fibre production, the Schaeffler Group has developed a new chuck shaft for spooling up of filaments.

In the Schaeffler Group, the chuck shaft has been calculated using the rotor dynamics module of the rolling bearing calculation software BEARINX®. The module was programmed in the development department of the Schaeffler Group. It is designed for the high requirements of chuck shafts.

**Requirements**

The chuck shaft rotates at approx. 15 000 min⁻¹ and has a rotor system with considerable masses. These operating data conceal the risk of resonance vibrations during operation. The vibration behaviour of the chuck shaft must therefore be precisely investigated.

High running accuracy, under which the shaft may only undergo radial wobble of a few micrometres, is a precondition for spooling with very high quality at high delivery speed. The vibration amplitude for the chuck shaft must be as small as possible. Orthotropic rigidity and damping in the bearings must also be taken into consideration in development, together with the damping elements, the gyroscopic effect and all six degrees of freedom in the motion formula.
**Design solution**  
The chuck shaft is supplied as a ready-to-fit unit and mounting is therefore very simple and quick. The double row ball bearings preloaded free from clearance on the chuck shaft were designed for a rating life of more than 50,000 h.

During development, investigations were carried out into natural frequencies, critical speeds and the effect of imbalance excitation at defined measurement points.

The rotor dynamics module in the rolling bearing calculation software BEARINX® helps to reduce the number of test series. This reduces the development costs and allows cost-effective solutions.

![Figure 17: Chuck shaft](image)

1. Special ball bearing LWTX

**Schaeffler Group products used**

1. Special ball bearing LWTX.
Texturing machine

Going back just a few decades: textiles made from synthetic fibres were “sticky” and not at all pleasant to wear – even if the advertising claimed otherwise. This has changed fundamentally. Synthetic fibres have completely lost their sticky charm and this is due in part to texturing machines that give the fibres and thus the textiles some of their comfortable characteristics.

Figure 18
Texturing machine

Requirements

Texturing machines give the plain, untreated filament a crimped effect. The filament has a speed of up to 1 500 m/min, the spindle speed can reach 25 000 min⁻¹. Apron rollers, compacting rollers and thread guidance rollers guide the filament through the texturing machine.

Smooth, quiet running without vibrations is essential in the texturing machine.

Operating data

| Product                | Speed  
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min⁻¹</td>
</tr>
<tr>
<td>Friction spindle</td>
<td>25 000</td>
</tr>
<tr>
<td>Apron roller</td>
<td>8 200</td>
</tr>
<tr>
<td>Compacting roller</td>
<td>7 350</td>
</tr>
<tr>
<td>Thread guidance roller</td>
<td>22 500</td>
</tr>
</tbody>
</table>
Design solution

In the friction bearing, the upper bearing is suspended “elastically”. The friction spindle therefore runs uniformly and quietly even at 8 000 min$^{-1}$ to 25 000 min$^{-1}$.

The Schaeffler Group apron roller has a deep drawn pulley with a profiled running surface and is coated with Corrotect®. The roller has two ball bearings pressed in, is fitted with sealing shields and runs with little friction. It has only a small mass and a low mass moment of inertia, therefore little energy is required.

The compacting roller is a special bearing with a tilting mechanism for the pin. This mechanism allows the roller to tilt in precisely one plane. If the compacting roller tilted in more than one plane, thread running would become imprecise. Like the apron roller, the compacting roller is lightweight and can accelerate quickly when it contacts the delivery shaft.

For the thread guidance roller, the Schaeffler Group supplies a special ball bearing with a hard chromium surface plating. The bearing geometry and lubrication was selected by the Schaeffler Group such that the roller has a very low starting torque and can accelerate very easily.

Rollers and friction bearings – all the parts supplied by the Schaeffler Group – have effective protection against dust and the ingress of fibres that are generated in textile processing.

---

Figure 19
Friction bearing FDS
Texturing machine

Figure 20
Apron roller FRM

Figure 21
Compacting roller OWA

Figure 22
Thread guidance roller FRM

**Schaeffler Group products used**

1. Friction bearing FDS
2. Apron roller FRM
3. Compacting roller OWA
4. Thread guidance roller FRM.
Weaving machine
Rapier drive

Rapier weaving machines produce a large number of materials: from light materials that ideally will remain hidden in the airbag, to heavy materials such as terry towelling that is pleasant against the skin.

Two rapiers, one on each side, guide the thread through the shed. Each rapier must shoot in and out of the shed 600 times a minute. In the middle, the carrying rapier passes the thread to the drawing rapier.

Each rapier is pulled and pushed by an elastic belt via an oscillating pulley. In order to prevent the elastic rapier belt lifting from the pulley, a continuous belt presses the rapier belt against the pulley. The continuous belt is guided by two tape tension pulleys.

Requirements

These tape tension pulleys must have particularly low mass, since they undergo acceleration and braking 600 times a minute. This results in continual reverse bending load on the bearing cage in the tape tension pulley.
Design solution  
The Schaeffler Group has fulfilled this requirement using very light tape tension pulleys comprising a ball bearing and a plastic pulley. The Schaeffler Group design and the special injection moulding process ensure permanent seating of the pulley on the bearing. This applies to both radial and axial loads.

Due to its design, the tape tension pulley is very light. It can therefore be easily reversed and requires little energy.

The tape tension pulley is sealed by the adjacent construction. The pulley can be relubricated via a hole in the inner ring.

The running surface of the pulley has a slightly curved profile, so the continuous belt is pushed consistently towards the centre of the running surface and is thus guided securely.

Schaeffler Group products used

Figure 24  
Tape tension pulley in the rapier drive

① Tape tension pulley BSR.
Weaving machine
Lay drive

The lay beats the weft thread which has been inserted between the warp threads. This process keeps the woven material tight and completes each entry of the weft. To beat the wefts threads, the lay is moved to the edge of the material and then returned to its original position. The lay is driven by a double eccentric.

Requirements
Track rollers on a double lever run on both cams on the eccentric. The lever converts the rotation of the cams into an oscillating movement.

The high shock loads and the subsequent reversed bending stresses on the outer rings of the rollers require an optimised design for the track roller in order to achieve maximum operating life.

Operating data

<table>
<thead>
<tr>
<th>Operating data</th>
<th>Load ratio $F_{r_{\text{max}}}/P_r$</th>
<th>Speed of rollers $n$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load ratio</td>
<td>2,2</td>
<td>1 300 \text{ min}^{-1} to 1 800 \text{ min}^{-1}</td>
</tr>
</tbody>
</table>
Design solution

The double lever is supported at its centre by a cylindrical roller bearing of series NJ with optimized load carrying capacity. Two yoke type track rollers of series NUTR are attached to the lever, one to a cylindrical pin, one to an eccentric pin.

The track roller is preloaded against the cam by the eccentric pin. This preload prevents inertia forces lifting the track rollers at the return point of their oscillating movement.

The enclosed gearbox in which the rollers and the cylindrical roller bearings run is supplied with recirculating oil lubrication.

Schaeffler Group products used

① Yoke type track roller NUTR
② Cylindrical roller bearing NJ
③ Inner ring IR..EGS

Figure 26
Lay drive
Section A – B

① Yoke type track roller NUTR (special design)
② Cylindrical roller bearing NJ (special design)
③ Inner ring IR..EGS (special design).
Weaving machine
Heald frame drive bearing arrangements

In order that a weft can be inserted during weaving in weaving machines, a shed must be opened with the warp threads. The shed is formed by the heald frames holding the warp threads. The possible number of heald frames is between 2 and 28. The frequency with which the up and down movement of the heald frames are reversed determines the texture of the fabric. The movement of the heald frames is driven by the dobby. The dobby controls the heald frames through a system of linkages and articulated levers.

Figure 27
Shedding function

Requirements

In movement of the heald frames, rapid stroke and long shed opening are required since this is the only way to ensure sufficient weft insertion. This movement leads to high shock loads. The clearance in the power flow of the articulation points – in the bearings – should therefore be zero. A compact heald frame depth and small mass are required, so there is only a small design envelope for the width and diameter of the heald frame bearings.
**Design solution**

The heald frame lever unit comprises a drawn cup needle roller bearing HK and several bearings.

The drawn cup needle roller bearing has reduced enveloping circle tolerances and is lubricated via a lubrication duct in the shaft.

Several bearings for heald frame drives are full complement bearings and therefore have particularly high load carrying capacity. They are sealed on both sides and lubricated for life. The radial internal clearance was designed in order to achieve small operating clearance.

![Heald frame diagram](image)

*Figure 28*

Heald frame

**Schaeffler Group products used**

1. Ball bearing KL
2. Drawn cup needle roller bearing HK
3. Roller bearing N
4. Needle roller bearing HN.
Needle felting machine

Almost everyone walks across them every day: needle felted carpets have “conquered” offices and homes. Furthermore, needled felt demonstrates its good characteristics not only in laid coverings but also in cars and upholstery.

In the needle felting machine, the loose pile is compacted to the firm, hard-wearing needled felt and the individual fibres are interlocked with each other.

![Needle felting machine](image)

**Figure 29**
Needle felting machine

**Requirements**

The needle beams needle into the pile at up to 3 000 strokes per minute. The beam is moved up and down approximately 40 mm by a crankshaft.

The high speeds, large masses and the needling process place extreme loads on the bearings and lead to high temperatures. Nevertheless, a long operating life is required since replacement involves a considerable amount of work.

**Design solution**

The crankshaft rotates in cage-guided cylindrical roller bearings. The connecting rod pin from which the needle beam is suspended swivels in a full complement cylindrical roller bearing.

One crankshaft has two connecting rods, each supported by a needle roller bearing. The needle roller bearing has an optimised steel cage and is stabilised for high temperatures.

Needle roller bearings are particularly advantageous in this case since they allow high basic load ratings within a very small space. The bearing gives very effective support for the accelerations and high speed.

The Schaeffler Group needle roller bearings run for long periods in three-shift operation in the needle felting machine.
**Schaeffler Group products used**

1. Special needle roller bearing NA
2. Special cylindrical roller bearing NCF..-V
3. Special cylindrical roller bearing NU.

**Figure 30**

Products
Impregnating machine

In those cases where absorption of moisture by textiles is not desirable, these materials are impregnated. In the impregnating machine, the lengths of fabric are fed through chemical baths by means of rolls.

**Figure 31**
Impregnating machine

**Requirements**
The bearings in the rolls are subject to demanding requirements. While the shafts are sealed at the housing bore by means of floating ring seals, leakage is still to be expected. The bearing arrangement must therefore be well protected against corrosion. Fluids should also be able to flow away.
The floating ring seals must be replaced regularly, so it must be possible to quickly change the bearings.

**Operating data**

<table>
<thead>
<tr>
<th>Operating data</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Speed</td>
<td>min⁻¹</td>
</tr>
<tr>
<td>Radial load</td>
<td>N</td>
</tr>
<tr>
<td>Temperature</td>
<td>°C</td>
</tr>
</tbody>
</table>

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>600</td>
<td>1 200</td>
</tr>
<tr>
<td>95</td>
<td></td>
</tr>
</tbody>
</table>
**Design solution**

A flanged housing unit LCFTRY is flange mounted onto the container from the outside. A flanged spacer for centring the bearing is screw mounted from the inside. As a result, it is not necessary to realign the rolls when the bearings are changed.

The flanged spacer has openings to allow water to run out; it is protected against corrosion by a special coating.

The bearing is also protected by labyrinth seals and is filled with a water-repellent grease. The bearing can be relubricated through rust-resistant lubrication nipples.

---

**Schaeffler Group products used**

1. Flanged housing unit LCFTRY.

---

*Figure 32*

Float unit

*Figure 33*

Detail: Float unit
The reduction of costs by the use of complete units is an increasingly important subject in the textile machinery industry. An example of one such complete unit is the eccentric bearing arrangement in this embroidery machine. The eccentric bearing arrangement must convert rotary motion into oscillating motion.

**Requirements**

The oscillating motion provides the up and down motion of the needle bar to which the embroidery needle is fixed. The eccentric bearing is subjected to only slight loads by the dynamic forces. The speed of the eccentric is approx. 1000 revolutions per minute.
**Design solution**

The eccentric bearing arrangement on the embroidery machine is a complete unit comprising a lever, an eccentric, a connecting rod and a flange. The eccentric is supported by a special ball bearing integrated in the connecting rod. This ball bearing is sealed on both sides and greased for life. The flange incorporates a single row ball bearing sealed on both sides. The lever bearing arrangement includes a compact drawn cup needle roller bearing HK and a needle roller bearing NK.

![Fig. 35](image1.png)

**Figure 35**

Eccentric bearing arrangement

![Fig. 36](image2.png)

**Figure 36**

Detail: Eccentric bearing arrangement, section A – B

**Schaeffler Group products used**

1. Needle roller bearing NK
2. Eccentric bearing ELG (special design)
3. Deep groove ball bearing
4. Drawn cup needle roller bearing HK.
Addresses

Algeria  Schaeffler KG
        Georg-Schäfer-Strasse 30
        Schweinfurt 97421
        Germany
        Phone  +49 9721 913085
        Fax    +49 9721 913347
        E-Mail Erich.Banz@schaeffler.com

Andorra  Schaeffler France SAS
        44-48, rue Louveau – B.P. 91
        Chatillon 92323
        France
        Phone  +33 1 40 92 16 16
        Fax    +33 1 40 92 87 57
        E-Mail fag@fr.fag.com

Angola  Schaeffler KG
        Georg-Schäfer-Strasse 30
        Schweinfurt 97421
        Germany
        Phone  +49 9721 913085
        Fax    +49 9721 913347
        E-Mail Erich.Banz@schaeffler.com

Antigua and Barbuda  Rodamientos FAG, S.A. de C.V.
        Av. Paseo de la Reforma 383
        Int. 702 – 702
        Col. Cuauhtémoc – Del. Cuauhtémoc
        Mexico DF 06500
        Phone  +52 55 5208 1208+52 55 5208 0571
        Fax    +52 55 5208-0836

Argentina  Schaeffler Argentina S.A.
        Avda. Alvarez Jonte 1938
        Buenos Aires C1416EXR
        Phone  +54 11 40 16 15 00
        Fax    +54 11 45 82 33 20
        E-Mail inaarg@ina.com.ar

Armenia  FAG Representative Office Ukraine
        Ul. Schelkowitschnaja 16B, of. 29 –30
        Kiev 01024
        Ukraine
        Phone  +380 44 253 72 60
        Fax    +380 44 253 96 42
        E-Mail office@fag.kiev.ua

Australia  FAG Australia Pty Ltd.
        FAG Australia Morningside
        Unit 3, 47 Steel Place
        Morningside 4170
        Phone  +61 7 3399 9161
        Fax    +61 7 3399 9351
        E-Mail Alex.Jarufe@au.fag.com

        FAG Australia Pty Ltd.
        FAG Australia North Balwyn
        Suite 14, Level 3
        74 Doncaster Road
        North Balwyn 3104
        Phone  +61 3 9859 8020
        Fax    +61 3 9859 8767
        E-Mail Milos.Grujic@au.fag.com

        FAG Australia Pty Ltd.
        FAG Australia South Perth
        Suite 5, 3rd Floor
        78 Mill Point Road
        South Perth 6151
        Phone  +61 8 9368 6222
        Fax    +61 8 9367 2049
        E-Mail Jeff.Gordon@au.fag.com

        FAG Australia Pty Ltd.
        Level 1, Bld. 8,
        Forest Central Business Park
        49 Frenchs Forest Road
        Frenchs Forest 2086
        Phone  +61 2 8977 1000
        Fax    +61 2 9452 4242
        E-Mail Andreas.Pieper@au.fag.com

        Schaeffler Australia Pty Ltd.
        Suite 14, Level 3
        74 Doncaster Road
        North Balwyn 3104
        Phone  +61 3 98 57 09 81
        Fax    +61 3 98 59 87 67
        E-Mail inavic@au.ina.com

        Schaeffler Australia Pty Ltd.
        142 Parraweeno Road
        Taren Point 2229
        Phone  +61 2 97 10 11 00
        Fax    +61 2 95 40 32 99
        E-Mail sales@ina.au.com

Austria  FAG AUSTRIA AG
        Ferdinand-Pölzl-Strasse 2
        Berndorf, St. Veit 2560
        INA AUSTRIA GmbH
        Marktsstrasse 5
        Vösendorf 2331
        Phone  +43 1 699 92 54 10
        Fax    +43 1 699 25 41 55
        E-Mail ina.austria@at.ina.com

Azerbaijan  Schaeffler Rußland GmbH
        Leningradskiy pr, 37A
        Bld. 14, 10. floor
        Moscow 125167
        Russia
        Phone  +7 95 737 3281
        Fax    +7 95 737 3298
        E-Mail fagmoskau@col.ru
Addresses

China
FAG China Company Ltd.
Room 711, Scitech Tower
22 Jianguomenwai Avenue
Beijing 100004
Phone +86 10 6515 0288
Fax +86 10 6512 3433
E-Mail sales_bj@cn.fag.com

FAG China Company Ltd.
Room 2408, Sichuan CBC Building
88 Tidu Street
Chengdu Sichuan 610016
Phone +86 28 8676 6718
Fax +86 28 8676 6728
E-Mail sales_cd@cn.fag.com

FAG China Company Ltd.
Room 1505A
Goldlion Digital Network Centre
138 Ti Yu Road East
Guangzhou 510620
Phone +86 20 3878 2800
Fax +86 20 3878 8906
E-Mail sales_gz@cn.fag.com

FAG China Company Ltd.
Room 905 Central Plaza
227 Huang Pi Bei Lu
Shanghai 200003
Phone +86 21 6375 5000
Fax +86 21 6375 5001
E-Mail sales_sh@cn.fag.com

Schaeffler (China) Co Ltd.
Shenyang Office
Unit H/14F
Huaxin International Tower No. 219
Qingnian Street, Shenhe District
Shenyang 110015
Phone +86 24 23962633
Fax +86 24 23962533
E-Mail lweiquan@online.in.cn

Schaeffler (China) Co Ltd.
18 Chaoyang Road, Jiangsu Province
Economical Development Area
Taicang 215400
Phone +86 512 5395 7700
Fax +86 512 5357 4064
E-Mail min.wang@cn.ina.com

Colombia
FAG Interamericana AG
Calle 93 B – No. 11A-44
Oficina 201
Bogotá
Phone +57 1 6 21 09 99
Fax +57 1 2 57 24 60
E-Mail fagintkalozdi@andinet.com

FAG Interamericana AG – Delegación II
Cali Av. 2 Norte – No. 23A-11 – Oficina 208 – Edificio Unimed
Cali
Phone +57 2 667 98 52
Fax +57 2 661 64 20
E-Mail fagintgonzalez@andinet.com

Costa Rica
Rodamientos FAG, S.A. de C.V.
Av. Paseo de la Reforma 383
Int. 702 – 702
Col. Cuauhtémoc – Del. Cuauhtémoc
Mexico DF 06500
Phone +52 55 5208 1208 +52 55 5208 0571
Fax +52 55 5208 0836

Croatia
Valjkasti Lezajevi d.o.o.
Domobranska 11
Zagreb 10000
Phone +385 1 37 01 943
Fax +385 1 37 64 473
E-Mail fag@fag.hr

Cuba
Rodamientos FAG S.A. de C.V.
Paseo de la Reforma 383
Despacho 701 y 702
Colonia Cuahtémoc
Mexico D.F. 06500
Phone +52 55 5208 1208
Fax +52 55 5208 0836
E-Mail Pubanz_t@us.fag.com
Honduras  Rodamientos FAG, S.A. de C.V.  
Av. Paseo de la Reforma 383  
Int. 702 – 702  
Col. Cuauhtémoc – Del. Cuauhtémoc  
Mexico DF  06500  
Phone +52 55 5208 1208+52 55 5208 0571  
Fax +52 55 5208-0836

Hungary  FAG International Sales and Service  
Infopark Sétány  
Neumann János u.1.  
Budapest 1117  
Phone +36 1 203 3831  
Fax +36 1 203 3830  
E-Mail fag@fag.hu  
INA Gördülőscápágy Kft.  
Neuman János út 1/B fsz.  
Budapest 1117  
Phone +36 1 4 81 30 50  
Fax +36 1 4 81 30 53  
E-Mail beata.kovacs@hu.ina.com

Iceland  Schaeffler Belgium S.P.R.L.  
Avenue du Commerce, 38  
Braine L’Alleud 1420  
Belgium  
Phone +32 2 3 89 13 89  
Fax +32 2 3 89 13 99  
E-Mail ina@be.ina.com

India  FAG Bearings India Ltd.  
# 18, Gr. Floor, Wst View  
77, B.V. Road, Basavanagudi  
Bangalore 560 004  
Phone +91 80 26574866  
Fax +91 80 26574866  
E-Mail gummakis@fag.co.in  
FAG Bearings India Ltd.  
710, 7th Floor, Phase II, Spencer Plaza,  
769 – Anna Salai  
Chennai 600 002  
Phone +91 44 28 4935 82/83/84/85  
Fax +91 44 28497577  
E-Mail pattabhi@fag.co.in  
FAG Bearings India Ltd.  
Jasmine Towers, 5th Floor  
Room No. 502B, 31, Shakespeare Sarani  
Kolkata 700 017  
Phone +91 33 22 8900 26/27/96  
Fax +91 33 22 89 00 95  
E-Mail nambarp@fag.co.in  
FAG Bearings India Ltd.  
Nariman Bhavan, 8th Floor, 227,  
Backbay Reclamation Nariman Point  
Mumbai 400 021  
Phone +91 22 2022 144/166/362  
Fax +91 22 2027022  
E-Mail murlik@fag.co.in  
FAG Bearings India Ltd.  
B-1504, Statesman House, 148,  
Barakhamba Road  
New Delhi 110 001  
Phone +91 11 8521476  
Fax +91 11 8521478  
E-Mail purim@fag.co.in  
FAG Bearings India Ltd.  
Maneja  
Vadodara 390 013  
Phone +91 265 26426 51/2/3/4  
Fax +91 265 2638804  
E-Mail matthur@fag.co.in  
FAG Bearings India Ltd.  
103 – Akshay Complex – Dhole Patil Road  
Pune 411 011  
Phone +91 20 560228 18/19  
Fax +91 20 6122229  
E-Mail sumanaha@fag.co.in  
INA Bearings India Pvt. Ltd.  
Indo-Germany Technology Park,  
Survey No. 297/298/299  
Village-Urawade, Tal. Mulshi  
Pune 412 108  
Phone +91 20 66520216 Ext 127  
Fax +91 20 66524756  
E-Mail Swapnil.Badkur@schaeffler.com  
INA Bearings India Pvt. Ltd.  
200, 3rd Main  
6th Cross, Mico Layout  
Bangalore 560076  
Phone +91 80 2668 5516  
Fax +91 80 2668 9986  
E-Mail ina.bangalore@vsnl.com  
INA Bearings India Pvt. Ltd.  
A-322 Ansai Chamber-1, 3,  
Bikhaji Cama Place  
New Delhi 110066  
Phone +91 11 26712413  
Fax +91 11 26712412  
E-Mail inadelhi@vsnl.net  
FAG Coordination Office Teheran  
No 43/4 Soleiman Khater Ave  
Malayeri Pour Cross Rd, 7th of Tir Square  
Teheran 15797  
Phone +98 21 883 63 51  
Fax +98 21 830 88 13  
E-Mail fagiran@safineh.net  
INA Italia S.r.l.  
Strada Regionale 229 Km 17  
Momo 28015  
Phone +39 3 21 92 92 11  
Fax +39 3 21 92 93 00  
E-Mail marketing@it.ina.com  
Schaeffler Japan Co., Ltd.  
Square Building, 15, Floor.  
2-3-12 Shinyokohama, Kohoku-ku  
Yokohama 222-0033  
Phone +81 45 478 2004  
Fax +81 45 478 2014  
E-Mail fagjapan@mb.infoweb.ne.jp
Korea  FAG Bearings Korea Corp.  
Seoul Main Office  
Samsung Fire-Marine Insurance Bld.,  
11-12 F  
#87, Euljiro-1ga, Jung-gu  
Seoul 100-191  
Phone +82 2 311 3000  
Fax +82 2 311 3050  
E-Mail jaehun.kim@schaeffler.com  
INA Korea Corp.  
1054-2 Shingil-dong  
Ansan-shi  
Kyonggi-do 425-020  
Phone +82 2 311 3098  
Fax +82 2 311 3054  
E-Mail yonguk.kwon@schaeffler.com  
INA Korea Corp.  
Changwon Office  
102-1 Chungang-dong  
Changwon-shi  
Kyongsangnam-do 641 030  
Phone +82 55 2 75 14 10  
Fax +82 55 2 75 25 53  
E-Mail Yonguk.Kwon@kr.ina.com  
Latvia  
INA-/FAG-Représentanz Baltikum  
K. Ulmana gatove 119  
Riga 2167  
Phone +371 7 06 37 95  
Fax +371 7 06 37 96  
E-Mail info@ina.lv  
kaspars.strelcs@ina.lv  
Lesotho  
FAG South Africa (Pty) Ltd.  
1 End Street Ext. Corner Heidelberg Road  
Johannesburg 2000  
South-Africa  
Phone +27 11 334 16 42  
Fax +27 11 334 21 13  
E-Mail inquiries@ina.co.za  
Lithuania  
INA-/FAG-Représentanz Baltikum  
K. Ulmana gatove 119  
Riga 2167  
Latvia  
Phone +371 7 06 37 95  
Fax +371 7 06 37 96  
E-Mail info@ina.lv  
kaspars.strelcs@ina.lv  
Luxembourg  
Schaeffler Belgium S.P.R.L.  
Avenue du Commerce, 38  
Braine L’Alleud1420  
Belgium  
Phone +32 2 3 89 13 89  
Fax +32 2 3 89 13 99  
E-Mail ina@be.ina.com  
Malawi  
FAG South Africa (Pty) Ltd.  
1 End Street Ext. Corner Heidelberg Road  
Johannesburg 2000  
South-Africa  
Phone +27 11 334 16 42  
Fax +27 11 334 21 13  
E-Mail inquiries@ina.co.za  
Malaysia  
Schaeffler Bearings (Malaysia) Sdn. Bhd.  
8A1, 8th flr Sungai Mas Plaza  
5th Miles – Jalan Ipoh  
Kuala Lumpur  
Phone +60 3 62581620  
Fax +60 3 62581614  
E-Mail lee_sl@my.fag.com  
Mauritius  
FAG South Africa (Pty) Ltd.  
1 End Street Ext. Corner Heidelberg Road  
Johannesburg 2000  
South-Africa  
Phone +27 11 334 16 42  
Fax +27 11 334 21 13  
E-Mail inquiries@ina.co.za  
Mexico  
INA Mexico, S.A. de C.V.  
Paseo de la Reforma 383, Int.704  
Col. Cuauhtemoc  
Mexico D.F. 06500  
Phone +52 55 55 25 00 12  
Fax +52 55 55 25 01 94  
E-Mail eduardo.zapata@mx.ina.com  
Rodamientos FAG S.A. de C.V.  
Paseo de la Reforma 383  
Colonia Cuauhtemoc  
Mexico D.F. 06500  
Phone +52 55 5208 1208  
Fax +52 55 08 05 71  
Fax +52 55 5208 08 36  
Moldova  
FAG Representative Office Ukraine  
ul. Schelkowitschnaja 16B, of. 29-30  
Kiew 01024  
Ukraine  
Phone +380 44 253 72 60  
Fax +380 44 253 96 42  
E-Mail office@fag.kiev.ua  
Mozambique  
FAG South Africa (Pty) Ltd.  
1 End Street Ext. Corner Heidelberg Road  
Johannesburg 2000  
South-Africa  
Phone +27 11 334 16 42  
Fax +27 11 334 21 13  
E-Mail inquiries@ina.co.za  
Namibia  
FAG South Africa (Pty) Ltd.  
1 End Street Ext. Corner Heidelberg Road  
Johannesburg 2000  
South-Africa  
Phone +27 11 334 16 42  
Fax +27 11 334 21 13  
E-Mail inquiries@ina.co.za  
Netherlands  
Schaeffler Nederland B.V.  
Gildeweg 31  
Barneveld 3771 NB  
Phone +31 342 40 30 00  
Fax +31 342 40 32 80  
E-Mail info@ina.nl  
New Zealand  
FAG New Zealand  
6 Te Apuna Place  
Mt Wellington  
Auckland 1706  
Phone +64 9 270 1837  
Fax +64 9 270 1839  
E-Mail David.Nevin@au.fag.com  
Nicaragua  
Rodamientos FAG, S.A. de C.V.  
Av. Paseo de la Reforma 383  
Int. 702 – 702  
Col. Cuauhtemec – Del. Cuauhtemec  
Mexico DF 06500  
Phone +52 55 5208 1208+52 55 5208 05 71  
Fax +52 55 5208 08 36
Addresses

Norway  Schaeffler Norge AS
Nils Hansens vei 2
Oslo 0604
Phone +47 23 24 93 30
Fax +47 23 24 93 31
E-Mail post@no.ina.com

Panama  Rodamientos FAG, S.A. de C.V.
Av. Paseo de la Reforma 383
Int. 702 – 702
Col. Cuauhtémoc – Del. Cuauhtémoc
Mexico DF 06500
Phone +52 55 5208 1208 + 52 55 5208 0571
Fax +52 55 5208-0836

Paraguay  Schaeffler Brasil Ltda.
Av. Independência, nr. 3500
Bairro Iporanga
Sorocaba 18087-101
Brazil
Phone +55 15 33 35 15 00
Fax +55 15 33 35 15 01
E-Mail dvendas@br.ina.com

Peru  Schaeffler Brasil Ltda.
Av. Independência, nr. 3500
Bairro Iporanga
Sorocaba 18087-101
Brazil
Phone +55 15 33 35 15 00
Fax +55 15 33 35 15 01
E-Mail dvendas@br.ina.com

Philippines  FAG Representative Office Philippines
UG19 City Square Building
6264 Estacion Street
Makati City
Metro Manila 1230
Phone +63 2 751 8806
Fax +63 2 751 8807
E-Mail brian.davis@ph.fag.com

Poland  FAG International Sales and Service
UL Armii Krajowej 27
Ruda Slaska 41-706
Phone +48 32 24 08 516
Fax +48 32 24 08 516
E-Mail borowy_a@fag.pl
FAG International Sales and Service
UL Szyszkowa 35/37
Warszawa 02-285
Phone +48 22 878 31 60
Fax +48 22 878 31 62
E-Mail fag@fag.pl
INA Lozyska Spolka z o.o.
Budynek E
UL Szyszkowa 35/37
Warszawa 02-285
Phone +48 22 878 41 20
Fax +48 22 878 41 22
E-Mail ewa.bienkowska@pl.ina.com

Portugal  INA Rolamentos Lda.
Av. Fontes Pereira de Melo, 470
Porto 4149-012
Phone +351 22 5 32 08 90
Fax +351 22 5 32 08 61
E-Mail marketing@pl.ina.com

Romania  FAG International Sales and Service
Bulevardul Ion Mihalache Nr. 58
Bl. 35A, Sc. A, Et. 6, Ap. 28. Sector 1
Bucuresti R-782151
Phone +40 21 222 83 12
Fax +40 21 222 82 31
E-Mail fag@fag.ro

Russia  Schaeffler Rußland GmbH
UL. Tjuschina 4-6
St. Petersburg 191 119
Phone +7 812 325 22 92
Fax +7 812 325 22 93
E-Mail fag@fag.spb.ru
Schaeffler Rußland GmbH
Leningradscky pr, 37A
Bld. 14, 10. floor
Moscow 125167
Phone +7 95 737 3281
Fax +7 95 737 3298
E-Mail fagmoskau@col.ru
Schaeffler Rußland GmbH
Leningradscky Prospekt 37A, Corp. 14
Moscow 125167
Phone +7 95 7 37 76 60
Fax +7 95 7 37 76 53
E-Mail inarussia@col.ru

Serbia-Montenegro  FAG Beograd
Branka Krsmanovica 12
Beograd 11118
Phone +381 11 308 87 82
Fax +381 11 308 87 75
E-Mail fagbeograd@sezampro.yu

Singapore  INA Bearings (Singapore) PTE. Ltd.
New Tech Park @ 151
Lorong Chuan #06-01
Singapore 556741
Phone +65 6 540 8600
Fax +65 6 540 8668
E-Mail yeeling.ng@sg.ina.com

Slovakia  FAG International Sales and Service
Nevádzova 5
Bratislava 821 01
Phone +421 2 43 294 260
Fax +421 2 43 330 820
E-Mail fag@fag.sk
INA loziska, spol. s r.o.
ul. Dr. G. Schaefflera
Kysucké Nové Mesto 024 01
Phone +421 41 4 20 59 11
Fax +421 41 4 20 59 18
E-Mail ina-loziska@ina.sk

Slovenia  INA kotalni lezaji Maribor
Glavni trg 17/b
Maribor 2000
Phone +386 2 22 82 070
Fax +386 2 22 82 07 5
E-Mail info@ina-lezaji.si
Every care has been taken to ensure the correctness of the information contained in this publication but no liability can be accepted for any errors or omissions. We reserve the right to make technical changes.

© Schaeffler KG · 2007, September

This publication or parts thereof may not be reproduced without our permission.

TMB GB-D