

ROLLING BEARINGS

ROLLING BEARINGS

The contents of this publication have been carefully evelauted and checked but due to continued technical developments we reserve the right to effect technical changes or amendments without prior notice

Contents

Foreword	6
1. Basic Calculations	7
1.1 Dynamic Load	7
1.1.1 Basic Dynamic Load Rating	7
1.1.2 Life	7
1.1.3 Equivalent Dynamic Load	14
1.1.4 Temperature Influence	16
1.2. Static Load	17
1.2.1 Basic Static Load Rating	17
1.2.2 Equivalent Static Load	17
1.2.3 Bearing Safety under Static Load	18
1.3 Limiting Speed	18
2. Rolling Bearing Design Data	19
2.1 Boundary Dimensions	19
2.2 Designation	20
2.3 Tolerance	27
2.4 Internal Clearance	38
2.5 Cages	42
2.6 Shields and Seals	42
3. Bearing Arrangement Design	43
3.1 General Principles of Rolling Bearing Arrangement Design	43
3.2 Bearing Location	44
3.2.1 Radial Location of Bearings	44
3.2.2 Axial Location of Bearings	46
3.3 Sealing	51
3.3.1 Non-Contact Sealing	51
3.3.2 Rubbing Sealing	52
3.3.3 Combined Sealing	53
4. Bearing Lubrication	54
4.1 Grease Lubrication	54
4.1.1 Relubrication Interval	54
4.1.2 Bearing Greases	54
4.2 Oil Lubrication	57
4.2.1 Bearings Oils	57
4.3 Lubrication with Solid Lubricants	60
5. Mounting and Dismounting of Rolling Bearings	60
6. Rolling Bearing Tables	62
Single Row Deep Groove Ball Bearings	64
Single Row Angular Contact Ball Bearings	86
Double Row Angular Contact Ball Bearings	102
Double Row Self-Aligning Ball Bearings	106
Single Row Cylindrical Roller Bearings	112
Double Row Cylindrical Roller Bearings	128
Single Row Needle Roller Bearings	132
Double Row Spherical Roller Bearings	136
Tapered Roller Bearings	152
Thrust Ball Bearings	174
Spherical Roller Thrust Bearings	184
Insert Ball Bearing Units	194
Spherical Plain Bearings	206
Accessories of Rolling Bearings	210
Rolling Elements	220
Special Rolling Bearings	226

FOREWORD

Publication Rolling Bearings ZKL shows a survey of standardized rolling bearings and accessories being produced and delivered under designation ZKL.

In the design, production, the storage and sales of the rolling bearings international standards ISO and national standards are used.

Technical section of the publication contains the most important facts concerning calculations, the design data about the arrangement design, lubrication, as well as mounting and dismounting of rolling bearings. The produced standardized rolling bearings and accessories in the basic design and in the main applications from the basic design, as e. g. bearings with tapered bore, shielded bearings or bearings with snap ring groove on outer ring, etc., are shown in the part Rolling Bearings Dimension Tables.

ZKL Group

1. Basic Calculations

Required bearing size is determined by the action of the external forces and according to the bearing required life and its reliability in the arrangement. Magnitude, direction and kind of load acting on the bearing, as well as the operating speed, are decisive for the type and bearing size selection. Other special or important conditions of each individual arrangement must be taken into account, e.g. operating temperature, limited space availability, simplicity of mounting, lubrication requirements, sealing, etc., and all of these can influence selection of the most suitable bearing. For given concrete conditions various bearing types can meet those requirements.

From the point of view of outer load acting and the bearing function in respective arrangement or unit we distinguish two types of the rolling bearing load in the bearing technique:

- when rolling bearing rings are relatively rotating against each other and bearing is under outer load (which is valid for most bearings), this is called dynamic bearing load.
- when rolling bearing rings either do not move against each other or they move only very slowly, the bearing carries an oscillating motion or the outer load acts for a shorter time than one bearing revolution, this is called static bearing load.

For bearing safety calculation, the life limited by bearing breakdown due to material fatigue of a bearing component is decisive in the first case. In the second case there are durable deformations of functional surfaces on the contact surfaces of rolling elements and raceways.

1.1 Dynamic Load

1.1.1 Basic Dynamic Load Rating

Basic dynamic load rating is a constant invariable load which the bearing can theoretically carry at the nominal life of one million revolutions.

For radial bearings, the radial dynamic load rating C_r refers to constant load. For thrust bearings, the axial dynamic load rating C_s refers to unvariable, purely axial load, acting centrically.

Basic dynamic load ratings C_r and C_a, whose size depends on bearing dimensions, rolling element number, material and bearing design, are shown for each bearing in the dimension tables. Values of the basic dynamic load ratings were stated according to the standard ISO 281. These values are verified in testing equipments and by operation results.

1.1.2 Life

Rolling bearing life is defined as the number of revolution carried out by one bearing ring against the other ring, until the first signs of material fatique occur on one ring or the rolling element.

Great differences in life can occur among bearings of the same type, that is why according to the standard ISO 201 the basic life is used as the basis for life calculation, i.e. life shown by the operation time attained or exceeded by a bearing group at 90% reliability.

Life Equation

Nominal bearing life is mathematically defined by the life equation valid for all bearing types.

$$L_{10} = \left(\frac{C}{P}\right)^{p}$$
 alebo $\frac{C}{P} = \left(L_{10}\right)^{\frac{1}{p}}$

 L_{10} - nominal life [10 6 ot]

C – basic dynamic load rating

(values C,C, are given in the dimension tables) [kN]

P – equivalent dynamic bearing load (equations for Pr, Pa calculations are in section 1.1.3 and at each design group of bearings) [kN]

p - exponent for ball bearings p=3 for cylindrical, needle-, spherical- and tapered roller bearings $p=\frac{10}{3}$

Table 1 shows dependence of the life L_{10} in million revolutions and respective ratio C/P. If the rotational speed does not change, the revised life calculation expressing the nominal life in operation hours can be used:

$$L_{10h} = \left(\frac{C}{P}\right)^{p} \cdot \frac{10^{6}}{60 \cdot n}$$
 [h]

$$L_{10h}$$
 - nominal life [h] n - rotational speed [min $^{-1}$]

C/P dependence from the nominal life L_{10} and the rotational speed n is shown for ball bearings in Table 2, for cylindrical roller, needle roller, spherical roller and tapered roller bearings in Table 3.

C/P ratio in dep	endence on I	Ife L _{10h}					Table
or ball bearings				For cylindrical roll	er, needle roller, so	pherical roller and taper	ed roller bearing
ife		Life	С	Life		Life	-
L ₁₀	<u>C</u> P	L ₁₀	<u>C</u> P	L ₁₀	<u>C</u> P	L ₁₀	<u>C</u> P
10		_10		_10	<u> </u>	_10	<u> </u>
10 ⁶ ot		10 ⁶ ot		10 ⁶ ot		10 ⁶ ot	
0,5	0,793	600	8,43	0,5	0,812	600	6,81
0,75	0,909	650	8,66	0,75	0,917	650	6,98
1	1	700	8,88	1	1	700	7,14
1,5	1,14	750	9,09	1,5	1,13	750	7,29
2	1,26	800	9,28	2	1,24	800	7,43
3	1,44	850	9,47	3	1,39	850	7,56
4	1,59	900	9,65	4	1,52	900	7,70
5	1,71	950	9,83	5	1,62	950	7,70
3	1,71	930	9,00	3	1,02	930	7,02
6	1,82	1000	10	6	1,71	1000	7,94
8	2	1100	10,3	8	1,87	1100	8,17
10	2,15	1200	10,6	10	2	1200	8,39
12	2,29	1300	10,9	12	2,11	1300	8,59
14	2,41	1400	11,2	14	2,21	1400	8,79
16	2,52	1500	11,4	16	2,30	1500	8,97
18	2,62	1600	11,7	18	2,38	1600	9,15
20	2,71	1700	11,9	20	2,46	1700	9,31
25	2,92	1800	12,2	25	2,63	1800	9,48
30	3,11	1900	12,4	30	2,77	1900	9,63
35	3,27	2000	12,6	35	2,91	2000	9,78
40	3,42	2200	13	40	3,02	2200	10,1
45	3,56	2400	13,4	45	3,13	2400	10,3
50	3,68	2600	13,8	50	3,23	2600	10,3
60	3,91	2800	14,1	60	3,42	2800	10,8
70	4,12	3000	14,4	70	3,58	3000	11
70	7,12	0000	17,7	70	0,00	0000	- ''
80	4,31	3500	15,2	80	3,72	3500	11,5
90	4,48	4000	15,9	90	3,86	4000	12
100	4,64	4500	16,5	100	3,98	4500	12,5
120	4,93	5000	17,1	120	4,20	5000	12,9
140	5,19	5500	17,7	140	4,40	5500	13,2
160	5,43	6000	18,2	160	4,58	6000	13,6
180	5,65	7000	19,1	180	4,75	7000	14,2
200	5,85	8000	20	200	4,90	8000	14,8
250	6,30	9000	20,8	250	5,24	9000	15,4
300	6,69	10000	21,5	300	5,54	10000	15,8
350	7,05	12500	23,2	350	5,80	12500	16,9
400	7,03	15000	24,7	400	6,03	15000	17,9
.00	7,07	10000	27,7	400	0,00	10000	17,0
450	7,66	17500	26	450	6,25	17500	18,7
500	7,94	20000	27,1	500	6,45	20000	19,5
550	8,19	25000	29,2	550	6,64	25000	20,9

C/P ratio in deper	C/P ratio in dependence on life L _{10h} and rotational speed n for ball bearings										Table 2			
Life	Rota	tional s	peed n	[min-1]										
L _{10h}	10	16	25	40	63	100	125	160	200	250	320	400	500	630
h														
100	_								1.06	1.15	1,24	1.34	1,45	1,56
500	-	-	-	1,06	1,24	1,45	1,56	1,68	1,82	1,15	2,12	2,29	2,47	2,67
1 000	-	_	1,15	1,34	1,56	1,82	1,96	2,12	2,29	2,47	2,67	2,88	3,11	3,36
1 250	_	1,06	1,24	1,45	1,68	1,96	2,12	2,29	2,47	2,67	2,88	3,11	3,36	3,63
1 200		1,00	1,24	1,40	1,00	1,50	2,12	2,20	۷,۳۱	2,01	2,00	0,11	0,00	0,00
1 600	_	1,15	1,34	1,56	1,82	2,12	2,29	2,47	2,67	2,88	3,11	3,36	3,63	3,91
2 000	1,06	1.24	1.45	1,68	1,96	2,29	2,47	2,67	2,88	3,11	3.36	3,63	3,91	4,23
2 500	1,15	1,34	1,56	1,82	2,12	2,47	2,67	2,88	3,11	3,36	3,63	3,91	4,23	4,56
3 200	1,24	1,45	1,68	1,96	2,29	2,67	2,88	3,11	3,36	3,63	3,91	4,23	4,56	4,93
0 200	1,21	1,40	1,00	1,00	2,20	2,01	2,00	0,11	0,00	0,00	0,01	7,20	4,00	1,00
4 000	1,34	1,56	1,82	2,12	2,47	2,88	3,11	3,36	3,63	3,91	4,23	4.56	4,93	5,32
5 000	1,45	1,68	1,96	2,29	2,67	3,11	3,36	3,63	3,91	4,23	4,56	4,93	5,32	5.75
6 300	1,56	1.82	2,12	2,47	2,88	3,36	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20
8 000	1,68	1,96	2,29	2,67	3,11	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70
	,	,	,	,	- /	, , ,	,		,	,	,	,		.,
10 000	1.82	2.12	2.47	2,88	3,36	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23
12 500	1,96	2,29	2,67	3,11	3,36	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81
16 000	2,12	2,47	2,88	3,36	3,91	4,56	4,93	5,23	5,75	6,20	6,70	7,23	7,81	8,43
20 000	2,29	2,67	3,11	3,63	4,23	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11
25 000	2,47	2,88	3,36	3,91	4,56	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83
32 000	2,67	3,11	3,63	4,23	4,93	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6
40 000	2,88	3,36	3,91	4,56	5,32	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5
50 000	3,11	3,63	4,23	4,93	5,75	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4
63 000	3,36	3,91	4,56	5,32	6,20	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4
80 000	3,36	4,23	4,93	5,75	6,70	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5
100 000	3,91	4,56	5,32	6,20	7,23	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6
200 000	4,93	5,75	6,70	7,81	9,11	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6

Life		Octation	al spee	d n [mir	·-1]									
L _{10h}	800		ai speei 1250			2500	3200	4000	5000	6300	8000	10000	12500	16000
_10h														
h														
100	1,68	1,82	1,96	2,12	2,29	2,47	2,67	2,88	3,11	3,36	3,63	3,91	4,23	4,56
500	2,88	3,11	3,36	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81
1 000	3,63	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83
1 250	3,91	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6
1 600	4,23	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5
2 000	4,56	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4
2 500	4,93	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4
3 200	5,32	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5
4 000	5,75	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6
5 000	6,20	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8
6 300	6,70	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2
8 000	7,23	7,81	8,43	9,11	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6
10 000	7,81	8,43	9,11	9,83		11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2
12 500	8,43	9,11	9,83	- , .	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	,	22,9
16 000	9,11	9,83		11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7
20 000	9,83	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7
25 000	10,6	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	,	28,8
32 000	11,5	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1
40 000	12,4	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-
50 000	13,4	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-
63 000	14,5	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-
80 000	15,6	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-	-
100 000	16,8	18,2	19,6	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-	-	-
200 000	21,2	22,9	24,7	26,7	28,8	31,1	-	-	-	-	-	-	-	-

C/P ratio in depende	ence on lif	e L _{10h} ar	nd rotati	onal spe	ed n for	cylindri	cal rolle	r, spher	ical rolle	er and ta	pered r	oller bea	arings	Table 3
Life	Rota	tional s	peed n	[min ⁻¹]										
L _{10h}	10	16	25	40	63	100	125	160	200	250	320	400	500	630
h														
100	-	-	-	-	-	-	-	-	1,05	1,1	1,21	1,30	1,39	1,49
500	-	-	-	1,05	1,21	1,39	1,49	1,60	1,71	1,83	1,97	2,11	2,26	2,42
1 000	-	-	1,13	1,30	1,49	1,71	1,83	1,97	2,11	2,26	2,42	2,59	2,78	2,97
1 250	-	1,05	1,21	1,39	1,60	1,83	1,97	2,11	2,26	2,42	2,59	52,78	2,97	3,19
1 600	-	1,13	1,30	1,49	1,71	1,97	2,11	2,26	2,42	2,59	2,78	2,97	3,19	3,42
2 000	1,05	1,21	1,39	1,60	1,83	2,11	2,26	2,42	2,59	2,78	2,97	3,19	3,42	3,66
2 500	1,13	1,30	1,49	1,71	1,97	2,26	2,42	2,59	2,78	2,97	3,19	3,42	3,66	3,92
3 200	1,21	1,39	1,60	1,83	2,11	2,42	2,59	2,78	2,97	3,19	3,42	3,66	3,92	4,20
4 000	1,30	1,49	1,71	1,97	2,26	2,59	2,78	2,97	3,19	3,42	3,66	3,92	4,20	4,50
5 000	1,39	1,60	1,83	2,11	2,42	2,78	2,97	3,19	3,42	3,66	3,92	4,20	4,50	4,82
6 300	1,49	1,71	1,97	2,26	2,59	2,97	3,19	3,42	3,66	3,92	4,20	4,50	4,82	5,17
8 000	1,60	1,83	2,11	2,42	2,78	3,19	3,42	3,66	3,92	4,20	4,50	4,82	5,17	5,54
10 000	1,71	1,97	2,26	2,59	2,97	3,42	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94
12 500	1,83	2,11	2,42	2,78	3.19	3,66	3,92	4,20	4.50	4.82	5.17	5.54	5.94	6,36
16 000	1,97	2,26	2,59	2,97	3,42	3,92	4,20	4,50	4,82	5,17	5.54	5,94	6,36	6,81
20 000	2,11	2,42	2,78	3,19	3,66	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30
25 000	2,26	2,59	2,97	3,42	3,92	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82
32 000	2,42	2,78	3,19	3,66	4,20	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38
40 000	2,59	2,97	3,42	3,92	4,50	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98
50 000	2,78	3,19	3,66	4,20	4,82	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62
63 000	2,97	3,42	3,92	4,50	5,17	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3
80 000	3,19	3,66	4,20	4,82	5,54	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0
100 000	3,42	3,92	4,50	5,17	5,94	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8
200 000	4,20	4,82	5,54	6,36	7,30	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6

Life	Rota	ational s	speed n	[min ⁻¹]										
L _{10h}	800	1000	1250	1600	2000	2500	3200	4000	5000	6300	8000	10000	12500	16000
h														
100	1,60	1,71	1,83	1,97	2,11	2,26	2,42	2,59	2,78	2,97	3,19	3,42	3,66	3,92
500	2,59	2,78	2,97	3,19	3,42	3,66	3,92	4,20	4,50	4,82	5,7	5,54	5,94	6,36
1 000	3,19	3,42	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82
1 250	3,42	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38
1 600	3,66	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98
2 000	3,92	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62
2 500	4,20	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3
3 200	4,50	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0
4 000	4,82	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8
5 000	5,17	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7
6 300	5,54	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6
8 000	5,94	6,36	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6
10 000	6,36	6,81	7,30	7,82	8,38	8,98	9,62		11,0	11,8	12,7	13,6	14,6	15,6
12 500	6,81	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7
16 000	7,30	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9
20 000	7,82	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2
25 000	8,38	8,98	9,62	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6
32 000	8,98	9,62	. , .	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-
40 000	,	10,3	11,0	,	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-	-
50 000	10,3	11,0	11,8	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-	-	-
63 000	11,0	11,8	12,7	-	14,6	15,6	16,7	17,9	- ,	20,6	-	-	-	-
80 000	11,8	12,7	13,6	,	15,6	16,7	17,9	19,2	20,6	-	-	-	-	-
100 000	12,7	13,6	14,6	15,6	16,7	17,9	19,2	20,6	-	-	-	-	-	-
200 000	15,6	16,7	17,9	19,2	20,6	-	-	-	-	-	-	-	-	-

In arrangements of the axles of road and railway vehicles the nominal life can be expressed by a revised relation in the volume of kilometers travelled.

$$L_{10\text{km}} = \left(\frac{C}{P}\right)^{\text{p}} \cdot \frac{\pi D}{1000}$$

 L_{10km} - nominal life [10 6 km] D - wheel diameter [m]

Reference Nominal Life Values

In cases, where the life for a given arrangement is not specified in advance, the values in tables 4 and 5 can be considered as adequate

Reference Nominal Life Values in Operating Hours	Table 4
Machine Type	Nominal Life L _{10h}
	h
Devices and tools rarely used	1 000
Household electric appliances, small fans	2 000 to 4 000
Machines for intermittent operation, hand tools, workshop lifting tackles, agricultural machine	4 000 to 8 000
Machines with intermittent operation where high reliability is required, auxiliary power station equipment, belt conveyors, trucks, elevators	8 000 to 15 000
Rolling mills	6 000 to 12 000
Machines operating 8 - 16 hours - stationary electric motors, gear drives, textile machine spindles, plastic material processing machines, printing machines, cranes	15 000 to 30 000
Machine tools in general	20 000 to 30 000
Machines with continuous operation - stationary electric machines, conveying equipment, roller conveyors, pumps, centrifuges, blowers, compressors, hammer mills, crushers, briqueting presses, mine hoists, rope pulleys	40 000 to 60 000
Machines with continuous operation for high operating reliability - power station plants, water works machinery, paper making machines, ship machines	100 000 to 200 000

Reference Nominal Life Values in Kilometers	Table 5
Vehicle Type	Nominal Life L _{10km}
	km
Road vehicle wheels :	
motor cycles	60 000
passenger cars	150 000 to 250 000
trucks, buses	400 000 to 500 000
Axle box bearings for railway vehicles :	
freight wagons (according to UIC)	
under continuous maximum axle load acting	800 000
tram cars	1 500 000
railway passanger carriages	3 000 000
motor wagons and motor units	3 000 000 to 4 000 000
locomotives	3 000 000 to 5 000 000

Equation of Adjusted Life

Adjust life is a corrected nominal life, where by calculation not only the load but the influence of bearing components, material, physical, mechanical, and chemical qualities of lubricants and the temperature regime of the bearing the operating environment' are taken into account.

$$L_{na} = a_1 \cdot a_{23} \cdot L_{10}$$

L_{na} - adjusted life for (100-n)% reliability
and other usual operation conditions [10⁶ rev]
a₁ - life factor for other than 90% reliability, see Table 6
a₂₃ - life factor of material, lubricant, production technology
and operation conditions, see Pict. 1
L₁₀ - nominal life [10⁶ rev]

Factor a ₁ Values		Table 6
Reliability (%)	L _n	a,
90	L ₁₀	1,00
95	L _e	0,62
96	L,	0,53
97	L,	0,44
98	L _a	0,33
99	Ľ,	0,21

We can find basic values of ${\rm a_{23}}$ by using the diagram in Pict.1.

$$\chi = \frac{v}{v_1}$$

υ – kinematic lubricant viscosity by operation bearing temperature

[mm².s⁻¹]

υ₁ - kinematic viscosity for defined rotational speed and selected bearing dimensions

[mm².s⁻¹]

Values υ and υ_1 are determined according to the diagrams in Pict. 23 or 24.

In the diagram, Pict. 1, the line I is valid for radial ball bearings operating in a very clean environment. In other cases the factor a_{23} is lower, depending on the environment cleanliness, and the decreasing tendency is dependent on the bearing design group in following order:

- angular contact ball bearings
- tapered roller bearings
- cylindrical roller bearings
- double row self-aligning ball bearings
- spherical roller bearings

Line II can be used when stating the factor a_{23} for spherical roller bearings operating in a dusty environment.

1.1.3 Equivalent Dynamic Load

In the arrangement the bearing is subjected to generally acting forces in various magnitudes, at various rotational speeds and with different acting period. From the point of view of calculation methodology the acting forces should be re-calculated into the constant load, by which the bearing will have the same life as it reaches in the conditions of the actual load.

Such a re-calculated constant radial or axial load is called the equivalent load P, or P_r (radial) or P_a (axial).

Combined Load

Constant Load

The outer forces acting on a bearing are not changed both from the point of view of size and time dependence.

Radial Bearings

If the radial bearings are simultaneously subjected to constant forces in radial and axial directions, the following equation is valid for calculating the radial equivalent dynamic load :

$$P_{c} = X.F_{c} + Y.F_{c}$$
 [kN]

P,	-	radial equivalent dynamic load	[kN]
F,	-	radial bearing load	[kN]
F _a	-	axial bearing load	[kN]
X	-	radial load factor	

Y - axial load factor

Factors X and Y depend on the ratio F_a/F_r . Values X and Y are shown in the dimension tables or in the introduction to each bearing type where closer information regarding bearing calculation of the respective type is given.

Thrust Bearings

Thrust ball bearings can carry only forces acting in axial direction and the following equation is valid for calculating axial equivalent dynamic load :

$$P_a = F_a$$
 [kN]

Spherical roller thrust bearings can also carry some radial load, but only by simultaneous acting of axial load, when condition $F_r \leq 0.55 \, F_a$ must be fulfilled. Axial equivalent dynamic load is calculated from equation

$$P_a = F_a + 1.2 F_r$$
 [kN]

Fluctuating Load

Real fluctuating load, whose time course we know, is for calculation replaced by mean hypothetical load. This hypothetical load has the same influence on the bearing as the fluctuating load.

Change of Load Magnitude by Constant Rotational Speed

If the bearing is subjected to a load in a constant direction, whose magnitude is changed in dependence on time and the rotational speed is constant (Pict. 2), we can calculate the mean hypothetical load F_e according to the following equation

$$F_s = \left(\sum_{i=1}^{n} F_i^3 \cdot \frac{q_i}{100}\right)^{\frac{1}{3}}$$

[kN]

At constant rotational speed with linear change of the load in constant direction (Pict. 3) the mean hypothetical load can be calculated from equation

$$F_s = \frac{F_{\text{min}} + 2F_{\text{max}}}{3}$$
 [kN]

If the actual load has a sine behaviour (Pict. 4), the mean hypothetical load is

$$F_s = 0.75.F_{max}$$
 [kN]

Change of Load Magnitude by Change of Rotational Speed

If the bearing is subjected in time to a varying load and the rotational speed is being changed, the mean hypothetical load is calculated from equation

$$F_s = \left(\frac{\sum_{i=1}^{n} F_i^3 \cdot q_i \cdot n_i}{\sum_{i=1}^{n} q_i \cdot n_i}\right)^{\frac{1}{3}}$$
 [kN]

$$n_i = n_1, ...n_n$$
 – constant rotational speed in time of partial loads $F_1, ...F_n$ acting [min⁻¹] $q_i = q_1, ...q_n$ – share of partial load and rotational speed acting [%]

If in dependence on time only the rotational speed is changed, the mean hypothetical constant rotational speed is calculated from equation

$$n_s = \frac{\sum_{i=1}^n q_i \cdot n_i}{100}$$
 [min⁻¹]

 $n_s = mean rotational speed$ $[min^{-1}]$

Oscillating Motion of Bearing

By oscillating motion with amplitude γ (Fig. 5) it is the simplest way of substituting the oscillating motion by hypothetical rotation, when the rotational speed equals the oscillation frequency. For radial bearings the mean hypothetical load is calculated from the equation

$$F_s = F_r \left(\frac{\gamma}{90}\right)^{\frac{1}{p}}$$
 [kN]

F_s - mean hypothetical load [kN]
F_r - actual radial load [kN]
γ - oscillating motion amplitude [°]

p - exponent p = 3 for ball bearings

 $p = \frac{10}{3}$ for cylindrical roller, needle roller, spherical roller and tapered roller bearings

1.1.4 Temperature Influence

Delivered bearing assortment is determined for usage in an environment with operating temperatures up to 120°C. Exceptions are double row spherical roller bearings which can work at temperatures up to 200°C, and single row ball bearings with seals (RS, 2RS, RSR, 2RSR) applicable up to 110°C, with seals RS2, -2RS2 applicable up to 150°C.

For higher operation temperatures the bearings are produced so that their necessary physical and mechanical qualities and dimensional stability can be secured.

Values of the basic dynamic load ratings C_r or C_a shown in the dimension tables of this publication should be multiplied by factor ft, shown in Table 7.

Values of f _t Factor			1	Table 7
Operating Temperature to [°C]	150	200	250	300
Factor f _t	0,95	0,9	0,75	0,6

1.2 Static Load

1.2.1 Basic Static Load Rating

Radial basic static load rating C_{or} and axial basic static load rating C_{oa} are shown for each bearing in the dimension tables of this publication. Values C_{or} and C_{oa} were stated by a calculation according to the standard ISO 76.

Basic static load rating is the load which corresponds to calculated contact stresses at the most heavily loaded contact zone of the rolling element and bearing raceway:

- 4600 MP_a for double row self-aligning ball bearings
 4 200 MP_a for the other ball bearings
 4 000 MP_a for cylindrical roller, needle roller, spherical roller and tapered roller bearings

1.2.2 Equivalent Static Load

Equivalent static load is a re-calculated radial load P_{rr} for radial bearings and axial axis load P_{rr} for thrust bearings.

$$P_{nr} = X_{n}F_{r} + Y_{n}F_{a}$$
 [kN]

$$P_{na} = X_{n}F_{r} + Y_{n}F_{a}$$
 [kN]

Pnr	_	radial equivalent static load	[kN]
P	_	axial equivalent static load	[kN]
		radial load	[kN]
F,	-	axial load	[kN]
Ϋ́	_	radial load factor	

Y_{_} - axial load factor

Factor s _o			Table 8
Bearing motion	Type of load, demands on bearing running	Bearings	s _o Cylindrical roller, needle roller, spherical roller, tapered roller bearings
Rotary	distinct impact load, high demands on smooth running	2	4
	after static loading bearing rotates under smaller load	1.5	3
	normal demands on smooth running		
	normal operating conditions and normal demands on running	1	1.5
	smooth impact-free operating	0.5	1
Oscillating	small oscillation angle with high frequency, with uneven impact loading	2	3.5
	large oscilating angle with low frequency and with approximately constant periodic load	1.5	2.5
Non-rotary	distinct impact load	1.5 to	1 3 to 2
	normal and small load, no special demands on bearing operation	1 to 0.	4 2 to 0.8
	spherical roller thrust bearings at all kinds of motions and loads	-	4

Factors X_a and Y_a are given for individual bearings in the dimensional tables of this publication. Subsequently, closer data for stating the equivalent static load of given bearing type are also given here.

1.2.3 Bearing Safety under Static Load

In practice the bearing safety under static load is found by the ratio C_{or}/P_{or} or C_{oa}/P_{oa} and is compared with data in table 8, where the values of least permissible factors s_n for various operation conditions are shown.

$$s_o = \frac{C_{or}}{P_{or}}$$
 or $\frac{C_{oa}}{P_{oa}}$

1.3 Limiting Speed

Limiting speed depends on the bearing type, its accuracy, cage design, internal clearance, operating conditions in arrangement, kind of lubrication and on other factors. This influence summary determines the heat generation in the bearing and also limited rotational speed which is first of all limited by the lubricant operating temperature.

For orientation, limiting rotational speed values are shown in the dimension tables for individual bearings in normal tolerance class, both for grease and oil lubrication. Given values are valid under presumption of adequate load ($L_{\text{toh}} \ge 100\,000\,\text{h}$), normal operating conditions and cooling.

It is also necessary to reduce the limiting speed values for radial bearings which are permanently loaded by relatively great axial force. The resulting limiting speed values depend on the ratio of axial and radial load F_{ν}/F_{ν} .

The shown limiting speed can be exceeded for ball bearings up to 3 times, cylindrical roller bearings up to 2 times, for other bearings except spherical roller and tapered roller bearings up to 1.5 times and for spherical roller bearings 1.3 times.

This exceeding requires:

- adaptation of lubrication and cooling
- higher bearing tolerance class and coresponding accuracy of the abutment parts
- higher radial clearance than normal
- cage of suitable design and material

2. Rolling Bearing Design Data

2.1 Boundary Dimensions

Bearings introduced in this publication are made in dimensions complying with the international standards ISO 15, ISO 355 and ISO 104.

In the dimensional plan each bearing bore diameter d corresponds to several outer diameters D and various widths are added to them – B or T for radial and H for thrust bearings. Bearings having the same bore diameter and outer diameter belong to one diameter series which is designated according to the ascending outer diameter by figures 7,8,9,0,1,2,3,4. Within each diameter series there are bearings of various width series according to the ascending width: 8, 0, 1, 2, 3, 4, 5, 6 for radial bearings and 7,9,1,2 for thrust bearings. Diameter and width series form dimension series which are designated by a two digit number, where the first digit indicates the width series and the second the diameter one, as shown in Pict. 7.

Some standard and special ZKL bearings in 3D visualization will be found on www.partserver.de.

Dimensional plan also includes the bearing ring chamfer dimensions, so called mounting chamfer, see Pict. 8

		earings ex	cept Tapered I	Roller Bearings		Roller Be	earings		Thrust Bearings		
r _{s min}	d or D above	to	in radial direction	in axial direction	d or D above	to	in radial direction	r _{s max} in axial direction	r _{s max} in radial and axial direction		
mm											
0,15	-	_	0,3	0,6	_	_	_	-	0,3		
0,10	_	-	0,5	0,8	_	_	_	_	0,5		
0,3	-	40	0,6	1,0	_	40	0,7	1,4	0,8		
0,0	40	-	0,8	1,0	40	-	0,9	1,6	0,8		
0,6	-	40	1,0	2,0	-	40	1,1	1,7	1,5		
3,0	40	-	1,3	2,0	40	-	1,3	2,0	1,5		
1,0	-	50	1,5	3,0	-	50	1,6	2,5	2,2		
.,0	50	-	1,9	3,0	50	-	1,9	3,0	2,2		
1,1	-	120	2,0	3,5	-	_	-	-	2,7		
.,.	120	-	2,5	4,0	-	_	-	-	2,7		
1,5	-	120	2,3	4,0	_	120	2,3	3,0	3,5		
.,0	120	-	3,0	5,0	120	250	2,8	3,5	3,5		
	-	_	-	-	250	-	3,5	4,0	3,5		
2,0	-	80	3,0	4,5	-	120	2,8	4,0	4,0		
2,0	80	220	3,5	5,0	120	250	3,5	4,5	4,0		
	220	-	3,8	6,0	250	-	4,0	5,0	4,0		
2,1	-	280	4,0	6,5		_		-,-	4,5		
_,.	280	-	4,5	7,0	_	-	-	-	4,5		
2,5		100	3,8	6,0	-	120	3,5	5,0	-,-		
-,-	100	280	4,5	6,0	120	250	4,0	5,5	-		
	280	-	5,0	7,0	250	_	4,5	6,0	_		
3,0	-	280	5,0	8,0	-	120	4,0	5,5	5,5		
-,-	280	-	5,5	8,0	120	250	4,5	6,5	5,5		
	-	_	-	-	250	400	5,0	7,0	5,5		
	-	-	_	-	400	-	5,5	7,5	5,5		
4,0	-	-	6,5	9,0	-	120	5,0	7,0	6,5		
.,_	-	-	-	-	120	250	5,5	7,5	6,5		
	-	_	_	-	250	400	6,0	8,0	6,5		
	-	-	_	-	400	-	6,5	8,5	6,5		
5,0	-	-	8,0	10,0	-	180	6,5	8,0	8,0		
	-	-	-	-	180	-	7,5	9,0	8,0		
6,0	-	-	10,0	13,0	-	180	7,5	10,0	10,0		
	-	-	-	-	180	-	9,0	11,0	10,0		
7,5	-	-	12,5	17,0	-	-	-	-	12,5		
9,5	-	-	15,0	19,0	-	-	_	-	15,0		
12,0	-	-	18,0	24,0	-	-	-	-	18,0		
15,0	-	-	21,0	30,0	-	-	_	-	21,0		

2.2 Designation

Bearing designation is created by numerical and letter symbols indicating the type, size and design of the bearing, see the scheme.

In the basic design the bearings are designated by a basic designation which consists of bearing type and size designation. The type designation is usually created by the symbol indicating the bearing design (see position 3 in the scheme) and the symbol for dimension series or diameter series (positions 4 and 5 in the scheme), e.g. bearing type 223, 302, NJ22, 511, 62, 12, etc. Bearing size designation is created by symbols for the nominal bore diameter d (see position 6 in the scheme).

Bearings with bore diameter d<10 mm:

Digit separated by a slash, or the last digit indicates directly the bore dimension in mm, e.g. 619/2, 624.

Bearings with bore diameter d = 10 to 17 mm:

double digit number	00 indicates bore	d = 10 mm,	e.g. 6200
	01	d = 12 mm,	e.g. 51101
	02	d = 15 mm,	e.g. 3202
	03	d = 17 mm	e.g. 6303

An exception to the designation are separable single row ball bearings - types E and BO, where the double digit number indicates directly the bore diameter in mm, e.g. E17.

Bearings with bore diameter d = 20 to 480 mm:

Bore diameter is a fivefold of the last double digit number, e.g. bearing 1320 has the bore diameter $d = 20 \times 5 = 100$.

An exception create bearings with bore d = 22, 28, and 32 mm, where the double digit number separated by a slash indicates directly the bore diameter in mm, e.g. 320/32AX, further separable single row ball bearings - type E and single row cylindrical roller bearings - type NG, where the double digit number, or number indicates directly the bore diameter in mm, e.g.: E20, E300, E3010, E301

Bearings with bore diameter d > 500 mm:

The last three or four digit number separated by a slash indicates directly the bore diameter in mm, e.g. 230/530M, NU29/1060.

Bearings produced in different design than standard are designated by so called complete designation, see the scheme. It consists of the basic designation and prefixes and suffixes indicating the difference from the basic design.

Meaning of Prefixes and Suffixes

In compliance with complete designation a survey and meaning of used prefixes and suffixes is given in the following part. (Number in brackets at individual groups corresponds to the position number in the scheme).

Prefixes

Material Different from Standard Bearing Steel (1)

C - ceramic balls, e.g. C B7006CTA

X - corrosion resisiting steel, e.g. X 623

T - case hardened steel, e.g. T 32240

Incomplete Bearing (2)

- L removable ring of separable bearing, e.g. L NU206, for thrust ball bearings without shaft washer, e.g. L 51215
- R separable bearing without removable ring, e.g. R NU206 or R N310
- E single shaft washer of thrust roller bearing, e.g. E 51314
- W single housing washer of thrust ball bearing, e.g. W 51411
- K cage with rolling elements, e.g. K NU320

Suffixes

Difference of Internal Design (7)

- A single row angular contact ball bearing, contact angle α = 25°, e.g. B7205ATB P5 single row tapered roller bearing with higher load rating and higher limiting speed, e.g. 30206A thrust ball bearing with higher limiting speed, e.g. 51105A
- AA single row angular contact ball bearing with contact angle $\alpha = 26^{\circ}$, e.g. B72010AATB P4
- B single row angular contact ball bearing with contact angle α = 40°, e.g. 7304B single row tapered roller bearing with contact angle α > 17, e.g. 32315B
- BE single row angular contact ball bearing with contact angle α = 40°, in new design, e.g. 7310BETNG
- C Single row angular contact ball bearing with contact angle α = 15°, e.g. B7202CTB P4 double row spherical roller bearing in new design, e.g. 22216C

- CA single row angular contact ball bearing with contact angle α = 12°, e.g. B7202CATB P5
- CB single row angular contact ball bearing with contact angle α = 10°, e.g. B7206CBTB P4
- CC double row spherical roller bearing in new design, e.g. 23996CCM
- D single row ball bearing type 160 with higher load rating, e.g. 16004D
- E single row cylindrical roller bearing with higher load rating, e.g. NU209E double row spherical roller bearing with higher load rating, e.g. 22215E spherical roller thrust bearing with higher load rating, e.g. 29416EJ

Difference of Boundary Dimensions

X - change of boundary dimensions, introduced by new international standards, e.g. 32028AX

Shields or Seals

- RS seal on one side, e.g. 6304RS
- -2RS seals on both sides, e.g. 6204-2RS
- RSN seal on one side and snap ring groove in outer ring opposite to seal side, e.g. 6306RSN
- RSNB seal on one side and snap ring groove in outer ring on the same side as seal, e.g. 6210RSNB
- -2RSN seals on both sides and snap ring groove in outer ring, e.g. 6310-2RSN
- RSR seal on one side adhering to flat surface of inner ring, e.g. 624RSR
- -2RSR seals on both sides adhering to flat surface of inner ring, e.g. 608-2RSR
- Z metal shield on one side, e.g. 6206Z
- -2Z metal shields on both sides, e.g. 6304-2Z
- ZN metal shield on one side and snap ring groove in outer ring opposite to metal shield, e.g. 6208ZN
- ZNB metal shield on one side and snap ring groove in outer ring on the same side as shield, e.g. 6306ZNB
- -2ZN metal shields on both sides and snap ring groove in outer ring, e.g. 6208-2ZN
- ZR metal shield on one side adhering to flat surface of iner ring, e.g. 608ZR
- -2ZR metal shields on both sides adhering to flat surface of inner ring, e.g. 608-2ZR

Bearing Ring Design Variation (10)

- K tapered bore, taper 1:12, e.g. 1207K
- K30 tapered bore, taper 1:30, e.g. 24064K30M
- N snap ring groove in outer ring, e.g. 6308N
- NR snap ring groove in outer ring and inserted snap ring, e.g. 6310NR
- NX snap ring groove in outer ring whose boundary dimensions do not correspond to 02 4605, e.g. 6210NX
- D solit inner ring, e.g. 3309D
- W33 oroove and lubrication holes in bearing outer ring surface, e.g. 23148W33M
- O lubrication grooves in bearing outer ring, e.g. NU10140

Cages (11)

Cage material for bearings in basic design is not usually indicated.

- J pressed steel cage, rolling element centred, e.g. 6034J
- J2 pressed steel cage, rolling element centred, new design for single row tapered roller bearings, e.g. 30206AJ2
- Y pressed brass cage, rolling elements centred, e.g. 6001Y
- F machined steel cage, rolling elements centred, e.g.6418F
- L machined light metal cage, rolling elemnents centred, e.g. NG180L C3SO
- M machined brass or bronze cage, rolling elements centred, e.g. NU330M

- T machined cage made of textite, rolling elements centred, e.g. 6005T P5
- TN machined cage made of polyamide or similar plastic, rolling elements centred, e.g. 6207TN
- TNG machined cage made of polyamide or similar plastic with glass fibres, rolling elements centred, e.g. 2305TNG

Cage design (introduced symbols are always used in connection with cage material symbols).

- A cage centred on outer ring, e.g. NU226MA
- B cage centred on inner ring, e.g. B7204CATBPS
- P machined window-type cage, e.g. NU1060MAP
- H one-piece open-type cage, e.g. 629TNH
- S cage with lubrication grooves, e.g. NJ418MAS
- V bearing without cage, full rolling element number, e.g. NU209V

Tolerance Class (12)

- PO standard tolerance class (not indicated), e.g. 6204
- P6 higher tolerance class than standard, e.g. 6322 P6
- P5 higher tolerance class than P6, e.g. 6201 P5
- PSA in some parameters higher tolerance class than PS, e.g. 6006TB PSA
- P4 higher tolerance class than P5, e.g. B7204CBTB P4
- P4A in some parameters higher tolerance class than P4, e.g. B7205CATB P4A
- P2 higher tolerance class than P4, e.g. B7205CATB P2
- P6E higher tolerance class for rotating electric machines, e.g. 6204 P6E
- P6X higher tolerance class for single row tapered roller bearings, e.g. 30210A P6X
- SP higher tolerance class for cylindrical roller bearings with tapered bore, e.g. NN3022K SPC2NA
- UP higher tolerance class than SP for cylindrical roller bearings with tapered bore,
 e.g. N1016 UPC1NA

Clearances (13)

- C2 clearance less than normal, e.g. 608 C2 normal clearance (not indicated), e.g. 6204
- C3 clearance greater than normal, e.g. 6310 C3
- C4 clearance greater than C3, e.g. NU320M C4
- CS clearance greater than C4, e.g. 22330M C5
- NA radial clearance for bearings with non-interchangable rings (always after radial clearance symbol), e.g. NU215 P63NA
- R... radial clearance in non-standardized range (range in µm), e.g. 6210A R10-20
- A... axial clearance in non-standardized range (range in μm), e.g. 3210 A20-30

Vibration Level (14)

C6 - reduced vibration level lower than normal (not indicated) e.g. 6304 C6

CO6 - reduced vibration level lower than C6, e.g. 6205 CO6

C66 – reduced vibration level lower than C06, e.g. 6205 C66

Concrete CO6 and C66 values are determined after negotiaitions between customer and supplier.

Note: Bearings in tolerance class P5 and higher have vibration level C6.

Increased Operation Safety

C7, C8, C9 – bearings with increased operation safety determined primarily for aircraft industry, e.g. 16008 C8

Symbol Combination (12-15)

Symbols for tolerance class, bearing internal clearances, vibration levels and increased operation safety are combined, when symbol C is omitted from the second and following special bearing characteristics, e.g.:

P6 + C3 = P63 e.g. 6211 P63 P6 + C8 = P68 e.g. 16002 P68 C3 + C6 = C36 e.g. 6303-2RS C36 P5 + C3 + C9 = P539 e.g. 6205MA P539 P6 + C2NA + C6 = P626NA e.g. NU1038 P626NA

Bearing Arrangement in Matched Set (16)

Designation of the arrangement in matched sets of two, three or four bearings consists of symbols indicating the bearing arrangement and symbols determining internal clearance, or preload of matched bearings.

Besides symbols shown in the table also U symbol is used and it indicates that respective bearings can be universally matched, e. q. B7003CTA P4UL.

Internal Clearance or Preload

Introduced symbols are always used in combination with matching symbols.

- A bearing matching with clearance, e.g. 73050A
- O bearing matching without clearance, e.g. 7305 P6XO
- L bearing matching with light preload, e.g. B7205CATB P4UL
- M bearing matching with medium preload, e.g. B7204CATB P5XM
- S bearing matching with great preload, e.g. B7304AATB P40S

Stabilization for Operation at Higher Temperature

Both rings have stabilized dimensions for operation at higher temperature

SO for operating temperature	up to 150 ° C
S1	up to 200 °C
S2	up to 250 °C
23	up to 300 °C
S4	up to 350 °C
\$5	up to 400 °C

Designation example - NG160LB C4S3.

Friction Moment (18)

JU - reduced friction moment, e.g. 619/2 JU

JUA – bearings with determined friction moment for starting up, e.g. 623 JUA
JUB – bearings with determined friction moment for running out, e.g. 623 JUB

Grease (19)

For designation of bearings with shields or seals on both sides, filled with grease different from the standard one, symbol combinations are used for designation. The first two symbols determine the operating temperature range and the third (a letter) the name or type of lubricant, according to producer's prescription, or another symbol (a digit) determines the grease volume, which the sealed or shielded inner bearing's space is filled with.

- TL grease for low operating temperatures from -60°C to +100°C, designation example 6302-2RS TL
- TM grease for medium operating temperatures from -35°C to +140°C, designation example 6204-2ZR TM
- TH − grease for high operating temperatures from -30°C to +200°C, designation example 6202-2Z TH
- TW grease for both low and high operating temperatures from -40°C to +150°C, designation example 6310-2Z C4TW

 Note: Symbol TM need not be marked on bearings and packages.

Note. Symbol 111 ficed flot be marked on bearings and packages

Bearings accoording to Special Technical Terms

- TPF bearings produced according to special technical conditions agreed with the customer, e.g. bearing 6205MA P66 according to special technical conditions TPF 11142-71 is de-signated: 6205MA P66 TPF142
- TPF 99 double row spherical roller bearing for arrangements of railway vehicle axles, e.g. 23234 C3 TPF99
- TPF204 single row ball bearings for fitting in kiln car wheels, etc., e.g. 6308 TPF204
- TPFK bearings according to special technical conditions agreed with the customer, which have a great number of symbols indicating variations from the basic design.

In this case only the designation TPF..., is given, e.g. bearing NU1015, produced according to technical conditions TPFK 11137-70 is designated NU1015 TPFK137.

Bearings according to Special Drawing Documentation PLC PLC A-BC-DE-F designation structure

PLC - symbol for special rolling bearing

A – design group

- O single row ball bearings
- 1 double row ball bearings
- 2 thrust ball bearings
- 3 not occupied
- 4 single row cylindrical roller, spherical roller and needle roller bearings
- 5 double and multi-row cylindrical roller, spherical roller and needle roller bearings
- 6 single, double and four-row tapered roller bearings
- 7 special double row bearings
- 8 assembly units and separate parts
- 9 thrust cylindrical roller, spherical roller, tapered roller and needle roller bearings
- BC dimensional group two digit symbols
- DE series number in dimensional group two digit symbols
- variation of design one digit symbol

2.3 Tolerance

Under bearing tolerance, dimension and operation accuracy is understood. Bearings are manufactured in tolerance classes PO, P6, P5A, P4, P4A, P2, SP and UP.

Tolerance class PO is the basic one and a decreasing number in designation means the higher bearing tolerance class. Limiting values for dimension and operation acuracy shown in tables 20 to 30 comply with the standard ISO 492 and ISO 199 (O2 4612). Designation P5A and P4A are used for bearings manufactured in corresponding tolerance class (P5, P4), or selected parameters are in higher tolerance class than P5 and P4.

Tolerance Symbols and Their Meaning

nominal bore diameter d

d, nominal diameter of larger theoretical tapered bore diameter

ď, nominal diameter of shaft washer of double direction thrust bearings

deviation of single bore diameter from nominal Δ_{ds}

mean cylindrical bore diameter deviation in single radial plane $\Delta_{\rm dmp}$

(for tapered bore Δ dmp is valid for theoretical bore diameter)

deviation of mean larger theoretical diameter of tapered bore Δ_{d1mn}

mean shaft washer bore diameter deviation of double direction $\Delta_{\rm d2mp}$

thrust hearings in single radial plane

single bore diameter variation in single radial plane

mean cylindrical bore diameter variation

shaft washer bore diameter variation of double direction thrust bearings

in single radial plane

nominal outside diameter

 Δ_{Π_S} deviation of single outside diameter from the nominal dimension

 $\Delta_{\rm Dmp}$ mean outside cylindrical surface diameter deviation in single plane

single outside cylindrical surface diameter variation in single radial plane

N Dub mean outside cylindrical surface diameter variation

inner ring nominal width

total nominal width of tapered roller bearings Τ

T₁ nominal effective width of cup sub-unit

Τ, nominal effective width of cone sub-unit

inner ring single width deviation

nuter ring single width deviation

Δς

bearing single width deviation (total) $\Delta_{T_{S}}$ cone sub-unit effective width deviation

 Δ_{T1s} cup sub-unit effective width deviation

Δ_{T2s} outer ring nominal width V_{Bs} inner ring single width variation
 V_{Cs} outer ring single width variation
 K_{Ia} radial runout of assembled bearing inner ring
 K_{ea} radial runout of assembled bearing outer ring
 S₁ shaft washer raceway axial runout
 S_e housing washer raceway axial runout
 S_{Ia} inner ring flat seat face axial runout of assembled bearing
 S_{ea} outer ring flat seat face axial runout of assembled bearing
 S_d flat seat face axial runout
 S_D runout of outside cylindrical surface towards outer ring face
 S_s runout of supporting face towards seat face for single row tapered roller bearings.

Dimension and Running Accuracy of Radial Bearings (except Tapered Roller Bearings) **Tolerance Class P0 Inner Ring** Table 10 Cylindrical Bore Tapered Bore Δ_{dmp} $-\Delta_{\mathrm{dmp}}$ d $\Delta_{\rm dmp}$ K V_{Bs} Δ_{d1mp} Diameter Series 7,8,9 0,1 2,3,4 min max min max over max max max max max max max min max min μm mm -8 10 0 -120 2,5 -8 -120 -10 -120 +21 +21 -12 -120 +25 +25 -15 -150 +30 +30 +35 -20 +35 180 0 -25 -250 +40 +40 -30 -300 +46 +46 +52 -35 -350 +52 -40 -400 +57 +57 -45 -450 +63 +63 -50 -500 -750

-1000

-1250

1000 1250

-100

-75

-125

)		Δ_{Dmp}			eter Se			V _{Dmp}	K _{ea}	$\Delta_{_{\mathrm{Cs}}}$,, Δ _{Cs}
							bearings ²⁾ with seals				
over	to	max	min	max	max	max	max	max	max		
nm		μm									
		_	_		_	_		_			
6	18	0	-8	10	8	6	10	6	15		
18	30	0	-9	12	9	7	12	7	15		
30	50	0	-11	14	11	8	16	8	20		
50	80	0	-13	16	13	10	20	10	25		
80	120	0	-15	16 19	19	11	26	11	35		
120	150	0	-18	23	23	14	30	14	40		
120	150	U	-10	23	23	14	30	14	40		
150	180	0	-25	31	31	19	38	19	45		Corresponds to
180	250	0	-30	38	38	23	-	23	50		•
250	315	0	-35	44	44	26	_	26	60		$\Delta_{_{\mathrm{Bs}}}$, $V_{_{\mathrm{Bs}}}$ of the same
200	010	O	-00	77	77	20		20	00		bearing
315	400	0	-40	50	50	30	_	30	70		inner ring
400	500	0	-45	56	56	34	-	34	80		org
500	630	0	-50	63	63	38	-	38	100		
630	800	0	-75	94	94	55	-	55	120		
800	1000	0	-100	125	125	75	-	75	140		
1000	1250	0	-125	-	-	-	-	-	160		
1250	1600	0	-160	-	-	-	-	-	190		

Inner R	9											Table 1
d		$\Delta_{ m dmp}$		V _{dp} Diam	eter Se	eries	$V_{\rm dmp}$	K _{ia}	Δ _{Bs}		V _{Bs}	
				7,8,9		2,3,	4					
over	to	max	min		max			max	max	min	max	
nm		μm										
2,5	10	0	-7	9	7	5	5	6	0	-120	15	
10	18	0	-7	9	7	5	5	7	0	-120	20	
18	30	0	-8	10	8	6	6	8	0	-120	20	
0.0		_		40	40					400	0.0	
30	50	0	-10	13	10	8	8	10	0	-120	20	
50	80	0	-12	15	15	9	9	10	0	-150	25	
80	120	0	-15	19	19	11	11	13	0	-200	25	
120	180	0	-18	23	23	14	14	18	0	-250	30	
180	250	0	-22	28	28	17	17	20	0	-300	30	
250	315	0	-25	31	31	19	19	25	0	-350	35	
315	400	0	-30	38	38	23	23	30	0	-400	40	
400	500	0	-35	44	44	26	26	35	0	-450	45	
500	630	0	-40	50	50	30	30	40	0	-500	50	

)		Δ_{Dmp}		V _{Dp} Diame 7,8,9	eter Se 0,1		1 bearings 1) with seals	V _{Dmp}	K _{ea}	$\Delta_{_{\mathrm{Cs}}}$ $V_{_{\mathrm{Cs}}}$
over	to	max	min	max	max	max	max	max	max	
mm		μm								
6	18	0	-7	9	7	5	9	5	8	
18	30	0	-8	10	8	6	10	6	9	
30	50	0	-9	11	9	7	13	7	10	
50	80	0	-11	14	11	8	16	8	13	
80	120	0	-13	16	16	10	20	10	18	
120	150	0	-15	19	19	11	25	11	20	Corresponds to
150	180	0	-18	23	23	14	30	14	23	Δ_{Bs},V_{Bs}
180	250	0	-20	25	25	15	-	15	25	of the same
250	315	0	-25	31	31	19	-	19	30	bearing inner ring
315	400	0	-28	35	35	21	-	21	35	eg
400	500	0	-33	41	41	25	-	25	40	
500	630	0	-38	48	48	29	-	29	50	
630	800	0	-45	56	56	34	-	34	60	
800	1000	0	-50	75	75	45	-	45	75	
1) Valid	d only for	bearin	gs in o	liamete	r series	3 0,1,2	, 3 and 4			

Dimension and Running Accuracy of Radial Bearings (except Tapered Roller Bearings) **Tolerance Class P5 Inner Ring** Table 12 $\Delta_{\rm dmp}$ V_{dp} Diameter Series d V_{dmp} K_{ia} S, S_{ia} 1) Δ_{Bs} V_{Bs} 7,8,9 0,1,2,3,4 over to max min max max max max max max max min max mm μm 10 0 -5 -40 2,5 -5 -80 -6 -120 -8 -120 -9 -150 -10 -200 -13 -250 -15 -300 -18 -350 400 0 -23 -400

Outer	Ring										
D		Δ_{Dmp}		V _{dp} Diame 7,8,9	ter Series ²⁾ 0,1,2,3,4	V _{Dmp}	K _{ea}	S _D	S _{ea} 1)	Δ _{Cs}	V _{Cs}
over	to	max	min	max	max	max	max	max	max		max
mm		μm									
6	18	0	- 5	5	4	3	5	8	8		5
18	30	0	-6	6	5	3	6	8	8		5
30	50	0	-7	7	5	4	7	8	8		5
50	80	0	-9	9	8	5	8	8	10		6
80	120	0	-10	10	8	5	10	9	11	Corresponds to	8
120	150	0	-11	11	8	6	11	10	13	$\Delta_{_{Bc}}$	8
										of the same	
150	180	0	-13	13	10	7	13	10	14	bearing	8
180	250	0	-15	15	11	8	15	11	15	inner ring	10
250	315	0	-18	18	14	9	18	13	18		11
315	400	0	-20	20	15	10	20	13	20		13
400	500	0	-23	23	17	12	23	15	23		15
500	630	0	-28	28	21	14	25	18	25		18
630	800	0	-35	35	26	18	30	20	30		20

¹⁾ Valid only for ball bearings

²⁾ Not valid for shielded or sealed bearings

	nsion ance (_	Accura	cy of Ra	adial Be	earings (exce	pt Tapered	d Roller	Bearii	ngs)			
Inner	Ring													Table 13
d		$\Delta_{ m dmp}$		Δ _{ds} ¹⁾			eter Series 0 0,1,2,3,4	V _{dmp}	K _{ia}	S _d	S _{ia} ²⁾	Δ _{Bs}		V _{Bs}
over	to	max	min	max	min	max	max	max	max	max	max	max	min	max
mm		μm												
2,		0	-4	0	-4	4	3	2,0	2,5	3	3	0	-40	2,5
10	18	0	-4	0	-4	4	3	2,0	2,5	3	3	0	-80	2,5
18	30	0	-5	0	-5	5	4	2,5	3,0	4	4	0	-120	2,5
30	50	0	-6	0	-6	6	5	3,0	4,0	4	4	0	-120	3,0
50	80	0	-7	0	-7	7	5	3,5	4,0	5	5	0	-150	4,0
80	120	0	-8	0	-8	8	6	4,0	5,0	5	5	0	-200	4,0
00	0							1,0	0,0				_00	1,0
120	180	0	-10	0	-10	10	8	5,0	6,0	6	7	0	-250	5,0
180	250	0	-12	0	-12	12	9	6,0	8,0	7	8	0	-300	6,0
.00	230	J	12	3	12	12	J	0,0	5,0			- 3	500	3,0

Oute	r Ring												
D	to	Δ _{Dmp}	min	V _{Ds1)}	min	V _{Dp} Diamet 7,8,9 max	rer Series ³⁾ 0,1,2,3,4 max	V _{Dmp}	K _{ea}	S _D	S _{ea} ²⁾	$\Delta_{ extsf{Cs}}$	V _{Cs}
mm		um											
111111		μm											
6	18	0	-4	0	-4	4	3	2,0	3	4	5		2,5
18	30	0	-5	0	-5	5	4	2,5	4	4	5		2,5
30	50	0	-6	0	-6	6	5	3,0	5	4	5		2,5
								,					,
50	80	0	-7	0	-7	7	5	3,5	5	4	5		3,0
80	120	0	-8	0	-8	8	6	4,0	6	5	6	Corresponds	4,0
120	150	0	-9	0	-9	9	7	5,0	7	5	7	to	5,0
												$\Delta_{_{\mathrm{Bs}}}$,
150	180	0	-10	0	-10	10	8	5,0	8	5	8	of the same	5,0
180	250	0	-11	0	-11	11	8	6,0	10	7	10	bearing	7,0
250	315	0	-13	0	-13	13	10	7,0	11	8	10	inner ring	7,0
315	400	0	-15	0	-15	15	11	8,0	13	10	13		8,0

Valid only for bearings with diameter series 0, 1, 2, 3 and 4
 Valid only for ball bearings
 Not valid for shielded or sealed bearings

	sion and l	_	Accuracy	of Cylindr	ical Rolle	r Beraing	s with Tap	ered Bor	е		
Inner F	Ring										Table 14
d over	to	Δ _{dmp} max	min	Δ _{d1mp} max	–Δ _{dmp} min	V _{dp} max	K _{ia} max	S _d max	Δ _{Bs} max	min	V _{Bs} max
mm		μm									
18	30	+10	0	+4	0	3	3	8	0	-100	5
30	50	+12	0	+4	0	4	4	8	0	-120	5
50	80	+15	0	+5	0	5	4	8	0	-150	6
80	120	+20	0	+6	0	5	5	9	0	-200	7
120	180	+25	0	+8	0	7	6	10	0	-250	8
180	250	+30	0	+10	0	8	8	11	0	-300	10
250	315	+35	0	+12	0	9	10	13	0	-350	13
315	400	+40	0	+13	0	12	12	15	0	-400	15
400	500	+45	0	+15	0	14	12	18	0	-450	25

Outer	Ring						
D over	to	Δ _{Dmp} max	min	V _{Dp} max	K _{ea} max	S _D max	$\Delta_{_{\mathrm{Cs}}},V_{_{\mathrm{Cs}}}$
mm		μm					
50	80	0	-9	5	5	8	
80	120	0	-10	5	6	9	
120	150	0	-11	6	7	10	
120	100	U	-11	Ū	,	10	Corresponds to
150	180	0	-13	7	8	10	
180	250	0	-15	8	10	11	Δ_{Bs} a V_{Bs} of the same
250	315	0	-18	9	11	13	bearing
							inner ring
315	400	0	-20	10	13	13	
400	500	0	-23	12	15	15	
500	630	0	-28	14	17	18	
630	800	0	-35	18	20	20	

Tolera Inner F	nce Class Ring	UP									Table 15
d over	to	Δ _{dmp} max	min	Δ _{d1mp} max	-Δ _{dmp} min	V _{dp} max	K _{ia} max	S _d max	Δ _{Bs} max	min	V _{Bs} max
mm		μm									
18	30	+6	0	+2	0	3	1,5	3	0	-25	1,5
30	50	+7	0	+3	0	3	2,0	3	0	-30	2,0
50	80	+8	0	+3	0	4	2,0	4	0	-40	3,0
80	120	+10	0	+4	0	4	3,0	4	0	-50	3,0
120	180	+12	0	+5	0	5	3,0	5	0	-60	4,0
180	250	+14	0	+6	0	6	4,0	6	0	-75	5,0
250	315	+17	0	+8	0	8	5,0	6	0	-90	6,0

Dimension and Running Accuracy of Cylindrical Roller Bearings with Tapered Bore

Oute	r Ring						
D over	to	Δ _{Dmp} max	min	V _{Dp} max	K _{ea} max	S _D	$\Delta_{_{\mathrm{Cs}}},\mathrm{V}_{_{\mathrm{Cs}}}$
mm		μm					
50	80	0	-6	3	3	2	
80	120	0	-7	4	3	3	
120	150	0	- 8	4	4	3	Corresponds to
							$\Delta_{_{Bs}}$ a $V_{_{Bs}}$
150	180	0	-9	5	4	3	of the same
180	250	0	-10	5	5	4	bearing
250	315	0	-12	6	6	4	cone
315	400	0	-14	7	7	5	

Toler	Dimension and Running Accuracy of Tapered Roller Baerings Tolerance Class P0 Cone and Overall Bearing Width Table 16													
d over	to	Δ _{dmp} max	min	V _{dp}	V _{dmp} max	K _{ia} max	Δ _{Bs} max	min	Δ _{Ts}	min	Δ _{T1s} max	min	Δ _{T2s} max	min
Ovei	10	IIIax	1111111	IIIax	IIIax	IIIax	IIIax	111111	IIIax	111111	IIIax	111111	IIIax	111111
mm		μm												
10	18	0	-12	12	9	15	0	-120	+200	0	+100	0	+100	0
18	30	0	-12	12	9	18	0	-120	+200	0	+100	0	+100	0
30	50	0	-12	12	9	20	0	-120	+200	0	+100	0	+100	0
50	80	0	-15	15	11	25	0	-150	+200	0	+100	0	+100	0
80	120	0	-20	20	15	30	0	-200	+200	-200	+100	-100	+100	-100
120	180	0	-25	25	19	35	0	-250	+350	-250	+150	-150	+200	-100
180	250	0	-30	30	23	50	0	-300	+350	-250	+150	-150	+200	-100

Cup								
D over	to	Δ _{Dmp} max	min	V _{Dp} max	V _{Dmp} max	K _{ea} max	Δ _{Cs} max	min
mm		μm						
18	30	0	-12	12	9	18	0	-120
30	50	0	-14	14	11	20	0	-120
50	80	0	-16	16	12	25	0	-150
80	120	0	-18	18	14	35	0	-200
120	150	0	-20	20	15	40	0	-250
150	180	0	-25	25	19	45	0	-250
180	250	0	-30	30	23	50	0	-300
250	315	0	-35	35	26	60	0	-350
315	400	0	-40	40	30	70	0	-400

Dimension and Running Accuracy of Tapered Roller Bearings Tolerance Class P6X														
Cone and Overall Bearing Width														Table 17
d over	to	Δ _{dmp} max	min	V _{dp} max	V _{dmp} max	K _{ia} max	Δ _{Bs} max	min	Δ _{Ts} max	min	Δ _{T1s} max	min	Δ _{T2s} max	min
mm		μm												
10	18	0	-12	12	9	15	0	-50	+100	0	+50	0	+50	0
18	30	0	-12	12	9	18	0	-50	+100	0	+50	0	+50	0
30	50	0	-12	12	9	20	0	-50	+100	0	+50	0	+50	0
50	80	0	-15	15	11	25	0	-50	+100	0	+50	0	+50	0
80	120	0	-20	20	15	30	0	-50	+100	0	+50	0	+50	0
120	180	0	-25	25	19	35	0	-50	+150	0	+50	0	+100	0

Cup								
D over	to	Δ _{Dmp} max	min	V _{Dp} max	V _{Dmp} max	K _{ea} max	Δ _{Cs} max	min
mm		μm						
18	30	0	-12	12	9	18	0	-100
30	50	0	-14	14	11	20	0	-100
50	80	0	-16	16	12	25	0	-100
80	120	0	-18	18	14	35	0	-100
120	150	0	-20	20	15	40	0	-100
150	180	0	-25	25	19	45	0	-100
180	250	0	-30	30	23	50	0	-100
250	315	0	-35	35	26	60	0	-100

Tolerand	on and Runr ce Class P6 d Overall Be		•	apered Roller Beari	ngs			ī	able 18
d		$\Delta_{ m dmp}$		K _{ia}	Δ_{Bs}		Δ_{Ts}		
over	to	max	min	max	max	min	max	min	
mm		μm							
10	18	0	-7	7	0	-200	+200	0	
18	30	0	-8	8	0	-200	+200	0	
30	50	0	-10	10	0	-240	+200	0	
50	80	0	-12	10	0	-300	+200	0	
80	120	0	-15	13	0	-400	+200	-200	
120	180	0	-18	18	0	-500	+350	-250	

Cup					
D over	to	Δ _{Dmp} max	min	K _{ea} max	$\Delta_{ ext{Cs}}$
mm		μm			
18	30	0	-8	9	
30	50	0	-9	10	
50	80	0	-11	13	
					Corresponds
80	120	0	-13	18	to Δ_{Bs} of the same
120	150	0	-15	20	bearing cone
150	180	0	-18	23	
180	250	0	-20	25	
250	315	0	-25	30	

Dimension and Running Accuracy of Tapered Roller Bearings Tolerance Class P5 Cone and Overall Bearing Width Table												
d		$\Delta_{ m dmp}$		V _{dp}	V _{dmp}	K _{ia}	S _d	Δ _{Bs}		Δ _{Ts}		
over	to	max	min	max	max	max	max	max	min	max	min	
mm		μm										
10	18	0	-7	5	5	5	7	0	-200	+200	-200	
18	30	0	-8	6	5	5	8	0	-200	+200	-200	
30	50	0	-10	8	5	5	8	0	-240	+200	-200	
50	80	0	-12	9	6	7	8	0	-300	+200	-200	
80	120	0	-15	11	8	8	9	0	-400	+200	-200	
120	180	0	-18	14	9	11	10	0	-500	+350	-250	

Cup								
D		Δ _{Dmp}		V _{Dp} max	V _D	K _{ea}	S _D	$\Delta_{ t Cs}$
over	to	max	min	max	max	max	max	
mm		μm						
18	30	0	-8	6	5	6	8	
30	50	0	-9	7	5	7	8	
50	80	0	-11	8	6	8	8	
0.0	400	0	40	40	_			Corresponds to
80	120	0	-13	10	7	10 11	9	$\Delta_{_{\mathrm{Bs}}}$ of the same bearing
120 150	150 180	0	-15 -18	11 14	8 9	13	10 10	cone
150	100	U	-10	14	9	10	10	CONE
180	250	0	-20	15	10	15	11	
250	315	0	-25	19	13	18	13	

	n and Running Ao Class P0, P6 an her		st Bearings				Table 20
d		Δ_{dmp}		V _{dp} V _{d2p}	S	Do.	1)
d ₂ over	to	$\Delta_{\scriptscriptstyle ext{d2mp}}^{\scriptscriptstyle ext{d3mp}}$	min	v _{d2p} max	P0 max	P6 max	P5 max
OVCI	10	IIIdx	1111111	max	max	max	max
mm		μm					
-	18	0	-8	6	10	5	3
18	30	0	-10	8	10	5	3
30	50	0	-12	9	10	6	3
50	80	0	-15	11	10	7	4
80	120	0	-20	15	15	8	4
120	180	0	-25	19	15	9	5
180	250	0	-30	23	20	10	5
250	315	0	-35	26	25	13	7
315	400	0	-40	30	30	15	7
400	500	0	- 45	34	30	18	9
500	630	0	-50	38	35	21	11
630	800	0	- 75	-	40	25	13

Housing Was	sher				
D		Δ_{Dmp}		V_{Dp}	S _e 1)
over	to	max	min	max	· ·
mm		μm			
18	30	0	-13	10	
30	50	0	-16	12	
50	80	0	-19	14	
80	120	0	-22	17	
120	180	0	-25	19	
180	250	0	-30	23	
					Corresponds
250	315	0	-35	26	to S _i of shaft
315	400	0	-40	30	washer
					of the same
					bearing
630	800	0	-75	55	
300	555				
1250	1600	0	-160	-	
4) Net cellal fa		. In a sudue sus			
i) Not Valid to	or thrust spherical roller	bearings			

2.4 Internal Clearance

Bearing clearance is the value of one bearing displacement length of assembled bearing with respect to the other ring from one end position to the other one. The displacement can be in radial direction (radial clearance) or axial faxial clearance).

In a mounted bearing smaller radial clearance can be found than the same bearing had before mounting. Radial clearance reduction is caused by interference of the bearing rings on the shaft and in housing bore and thus it is dependent on selected tolerance of bearing seating surface diameters.

Another change of radial clearance, mainly its reduction, arises during operation from temperatures evoked by its own operation and surrounding sources, but also by elastic deformations caused by load.

Clearance for standard designed bearings is determined so that one of the bearing rings can be fixed, what is sufficient for most operation conditions in the arrangement. For special arrangements with different requirement on the radial clearance bearings with various radial clearance designated C1 up to C5 are produced.

Values for various internal clearances according to the standard ISO 5753 are shown for individual bearing types in tables 21 up to 27 and these values are valid for non-mounted bearings by zero measuring load.

For double row angular contact ball bearings instead of radial clearance the axial clearance measured at axial load 100 N is introduced.

Single row angular contact ball bearings and single row tapered roller bearings are usually mounted in pairs and the radial or axial clearence is adjusted during mounting.

Radial Clearance of Single Row Ball Bearings Table 21														
Bore Diameter		Radial Clearance									Single Row Radial Separable Clearance		nce	
d		C2		norm	al	СЗ		C4		C5		Ball Bearings		
over	to	min	max	min	max	min	max	min	max	min	max	Type E and BO	min	max
mm		μm											μm	
2,5	10	0	7	2	13	8	23	14	29	20	37	E10, E12	15	30
		-	9	3	18	11						E10, E12		
10	18	0					25	18	33	25	45		15	30
18	24	0	10	5	20	13	28	20	36	28	48	BO17, E17	25	45
24	30	1	11	5	20	13	28	23	41	30	53	E20	20	40
30	40	1	11	6	20	15	33	28	46	40	64			
40	50	1	11	6	23	18	36	30	51	45	73			
50	65	1	15	8	28	23	43	38	61	55	90			
65	80	1	15	10	30	25	51	46	71	65	105			
80	100	1	18	12	36	30	58	53	84	75	120			
100	120	2	20	15	41	36	66	61	97	90	140			
120	140	2	23	18	48	41	81	71	114	105	160			
140	160	2	23	18	53	46	91	81	130	120	180			
400	400	0	0.5	00	0.4	50	100	0.4	4.47	405	000			
160	180	2	25	20	61	53	102	91	147	135	200			
180	200	2	30	25	71	63	117	107	163	150	215			

Axial Clearance of Double Row Angular Contact Ball Bearings											
Bore Diam	neter	Axial Cle	Axial Clearance								
d		C2		normal		C3		C4			
over	to	min	max	min	max	min	max	min	max		
mm		μm									
6	10	1	11	5	21	12	28	25	45		
10	18	1	12	6	23	13	31	27	47		
18	24	2	14	7	25	16	34	28	48		
24	30	2	15	8	27	18	37	30	50		
30	40	2	16	9	29	21	40	33	54		
40	50	2	19	11	33	23	44	36	58		
50	65	3	22	13	36	26	48	40	63		
65	80	3	24	15	40	30	54	46	71		

Radial	Clear	ance	of Do	uble	Row S	Self-A	llignir	ng Ba	II Bea	ring										Table	23
Bore Di	ameter to		ndrical ial Clea		е	C3	max	C4	max	C5	max	Rad C2	lial C	Bore leara nori	nce mal	C3	max	C4	max	C5	max
OVCI			IIIdx		max	1111111	IIIax		max		IIIdx	1111111	max		παχ	1111111	max		max		max
mm		μm										μm									
0.5	_		0	_	4.5	40	00	45	0.5	04	00									-	-
2,5	6	1	8	5	15	10	20	15	25	21	33	-	-	-	-	-	-	-	-	-	-
6 10	10 14	2	9	6	17 19	12	25 26	19 21	33	27 30	42 48	-	-		-	-	-	-	-	-	-
14	18	3	12	8	21	15	28	23	37	32	50	-	-	-	-	-	-	-	-		
14	10	3	12	0	21	10	20	23	31	32	50	_								-	_
18	24	4	14	10	23	18	30	25	39	34	52	7	17	13	26	20	33	28	42	37	55
24	30	5	16	11	24	19	35	29	46	40	58	9	20	15	28	23	39	33	50	44	62
30	40	6	18	13	29	23	40	34	53	46	66	12	24	19	35	29	46	40	59	52	72
40	50	6	19	14	31	25	44	37	57	50	71	14	27	22	39	33	52	45	65	58	79
50	65	7	21	16	36	30	50	45	69	62	88	18	32	27	47	41	61	56	80	73	99
65	80	8	24	18	40	35	60	54	83	76	108	23	39	35	57	50	75	69	98	91	123
80	100	9	27	22	48	42	70	64	96	89	124	29	47	42	68	62	90	84	116	109	144
100	120	10	31	25	56	50	83	75	114	105	145	35	56	50	81	75	108	100	139	130	170
120	140	10	38	30	68	60	100	90	135	125	175	-	-	-	-	-	-	-	-	-	-
140	160	15	44	35	80	70	120	110	161	150	210	-	-	-	-	-	-	-	-	-	-

Radial Clearance of Single Row Cylindrical Roller Bearings								Table 24			
Bore Diar	meter	Radia	l Clearan	ice							
d		C2		normal		C3		C4		C5	
over	to	min	max	min	max	min	max	min	max	min	max
mm		μm									
10	24	0	25	20	45	35	60	50	75	65	90
24	30	0	25	20	45	35	60	50	75	70	95
30	40	5	30	25	50	45	70	60	85	80	105
40	50	5	35	30	60	50	80	70	100	95	125
50	65	10	40	40	70	60	90	80	110	110	140
65	80	10	45	40	75	65	100	90	125	130	165
80	100	15	50	50	85	75	110	105	140	155	190
100	120	15	55	50	90	85	125	125	165	180	220
120	140	15	60	60	105	100	145	145	190	200	245
120	140	10	00	00	100	100	140	1-10	100	200	240
140	160	20	70	70	120	115	165	165	215	225	275
160	180	25	75	75	125	120	170	170	220	250	300
180	200	35	90	90	145	140	195	195	250	275	330
200	225	45	105	105	165	160	220	220	280	305	365
225	250	45	110	110	175	170	235	235	300	330	395
250	280	55	125	125	195	190	260	260	330	370	440
280	315	55	130	130	205	200	275	275	350	410	485
315	355	65	145	145	225	225	305	305	385	455	535
355	400	100	190	190	280	280	370	370	460	510	600
400	450	110	210	210	310	310	410	410	510	565	665
450	500	110	220	220	330	330	440	440	550	625	735
500	560	120	240	240	360	360	480	480	600	695	815
560	630	140	260	260	380	380	500	500	620	780	900
630	710	145	285	285	425	425	565	565	705	870	1010
710	800	150	310	310	470	470	630	630	790	980	1140
000	000	100	050	050	520	500	000	000	000	1100	1070
800 900	900 1000	180 200	350 390	350 390	520	520 580	690 770	690 770	860 960	1100 1220	1270 1410
1000	1120	200	430	430	640	640	850	850	1060	1360	1570
1000	1120	220	430	430	040	040	000	650	1000	1300	1370
1120	1250	230	470	470	710	710	950	950	1190	1520	1760

	Radial Clearance of Double Row Cylindrical Roller Bearings with Tapered Bore Bearing with Non-Interchangable Rings Determined for Machine Tool Spindles Table 25											
Bore Dian	neter	Radial	Clearance			Bore Dia	meter	Radial	Clearance)		
d		C1NA		C2NA	١	d		C1NA		C2NA		
over	to	min	max	min	max	over	to	min	max	min	max	
mm		μm				mm		μm				
24	30	15	25	25	35	160	180	55	85	75	110	
30	40	15	25	25	40	180	200	60	90	80	120	
40	50	17	30	30	45	200	225	60	95	90	135	
50	65	20	35	35	50	225	250	65	100	100	150	
65	80	25	40	40	60	250	280	75	110	110	165	
80	100	35	55	45	70	280	315	80	120	120	180	
100	120	40	60	50	80	315	355	90	135	135	200	
120	140	45	70	60	90	355	400	100	150	150	225	
140	160	50	75	65	100	400	450	110	170	170	255	

Radial Cler	ance of Single Row I	Needle Roller Bearin	gs with Interchangabl	le Rings	Table	26
Bore Diamet	ter	Radial Clear	ance			
d		normal		C3		
over	to	min	max	min	max	
mm		μm				
10	14	10	50	25	70	
14	18	15	55	35	75	
18	24	25	65	40	80	
24	30	30	65	50	80	
30	40	40	75	60	95	
40	50	40	85	65	100	
50	65	45	90	70	120	
65	80	50	110	75	135	
80	100	60	115	95	150	
100	120	70	125	115	70	
120	140	80	155	130	205	
140	160	80	160	140	210	

Radial Clearance of Double Row Spherical Roller Bearings									Table 27		
Bore Di	ameter	Radial	rical Bore Clearance								
d	to	C2 min	may	normal min	may	C3 min	may	C4 min	may	C5 min	may
over	10	min	max	min	max	rriiri	max	min	max	min	max
mm		μm									
30	40	15	30	30	45	45	60	60	80	80	100
40	50	20	35	35	55	55	75	75	100	100	125
50	65	20	40	40	65	65	90	90	120	120	150
65	80	30	50	50	80	80	110	110	145	145	180
80	100	35	60	60	100	100	135	135	100	100	005
100	120	40	75	75	120	120	160	160	180 210	180	225
120	140	50	95	95	145	145	190	190	240	210 240	260 300
140	160	60	110	110	170	170	220	220	280	280	350
140	100	00	110	110	170	170	220	220	200	200	330
160	180	65	120	120	180	180	240	240	310	310	390
180	200	70	130	130	200	200	260	260	340	340	430
200	225	80	140	140	220	220	290	290	380	380	470
225	250	90	150	150	240	240	320	320	420	420	520
250	280	100	170	170	260	260	350	350	460	460	570
280	315	110	190	190	280	280	370	370	500	500	630
315	355	120	200	200	310	310	410	410	550	550	690
355	400	130	220	220	340	340	450	450	600	600	760
400	450	140	240	240	370	370	500	500	660	660	820
450	500	140	260	260	410	410	550	550	720	720	900
500	560	150	280	280	440	440	600	600	780	780	1000
560	630	170	310	310	480	480	650	650	850	850	1100
630	710	190	350	350	530	530	700	700	920	920	1190
710	800	210	390	390	580	580	770	770	1010	1010	1300
800	900	230	430	430	650	650	860	860	1120	1120	1440
800	900	230	430	430	000	000	800	000	1120	1120	1440

Bore Dia	ameter		ed Bore								
d		C2	Clearance	normal		C3		C4		C5	
over	to	min	max								
m											
mm		μm									
30	40	25	35	35	50	50	65	65	85	85	105
40	50	30	45	45	60	60	80	80	100	100	130
50	65	40	55	55	75	75	95	95	120	120	160
65	80	50	70	70	95	95	120	120	150	150	200
80	100	55	80	80	110	110	140	140	180	180	230
100	120	65	100	100	135	135	170	170	220	220	280
120	140	80	120	120	160	160	200	200	260	260	330
140	160	90	130	130	180	180	230	230	300	300	380
160	180	100	140	140	200	200	260	260	340	340	430
180	200	110	160	160	220	220	290	290	370	370	470
200	225'	120	180	180	250	250	320	320	410	410	520
225	250	140	200	200	270	270	350	350	450	450	570
0.50		450					000	000		400	000
250	280	150	220	220	300	300	390	390	490	490	620
280	315	170	240	240	330	330	430	430	540	540	680
315 355	355 400	190 210	270 300	270 300	360 400	360 400	470 520	470 520	590 650	590 650	740 820
333	400	210	300	300	400	400	520	520	650	650	020
400	450	230	330	330	440	440	570	570	720	720	910
450	500	260	370	370	490	490	630	630	790	790	1000
500	560	290	410	410	540	540	680	680	870	870	1100
560	630	320	460	460	600	600	760	760	980	980	1230
230	550	320	.50	.50	550	230	. 00	. 00	200	230	.230
630	710	350	510	510	670	670	850	850	1090	1090	1360
710	800	390	570	570	750	750	960	960	1220	1220	1500
800	900	440	640	640	840	840	1070	1070	1370	1370	1690

2.5 Cages

Cage in the rolling bearing fulfills the following roles:

- separates rolling elements evenly around the periphery
- prevents contact of rolling elements and their sliding
- prevents falling out of the rolling elements from separable or self-aligning bearings when mounting.
 From the point of view of design and material the cages are divided into pressed and machined.

Pressed cages are made of steel or brass sheet and are mostly used in dimensionally smaller and medium bearings. Their advantage in comparison with the solid cages is the smaller weight. Machined cages are made of steel, brass, bronze, light metals or plastic in various designs. Cages made of metals are used when there are higher demands on the cage rigidity and the bearing is determined for higher operational temperatures. Cages are radially centered on the rolling elements in bearings, this is the most usual way, or they are centered on the rib of either of the bearing rings.

Bearings without cages, i.e. with full complement of rolling elements, are only rarely used, namely only for some bearing types, e.g. single row needle roller bearings.

In the texts about individual bearing types the survey of cages in standard design and delivery possibilities of bearings with cages of non-standard design are given in the section Cages.

2.6 Shields and Seals

Bearings with sealing on one or both sides are manufactured with shields (Z, ZZ, ZR, ZZR) or seals (RS, ZRS, RSR, ZRSR).

Shields form a non-contact sealing. In design Z and 2Z the fitting for the shield is in the inner ring, in design ZR and 2ZR the shield adheres on the smooth rib of the bearing inner ring.

Sealing is created by sealing rings made of rubber vulcanized on sheet steel reinforcement, which create an effective contact sealing with a chamfered fitting on the inner ring (RS, 2RS) as well as in design with contact on the smooth rib of the inner ring (RSR, 2RSR).

Seals and sealing rings are fastened in the grooves of the outer ring and are unseparable.

Sealing RS, 2RS, RSR, 2RSR can be used for temperature range -30 °C to +110 °C, sealing RS1,

-2RS1,RSR1 and -2RSR1 for temperature range -45 $^{\circ}$ C to +120 $^{\circ}$ C, sealing RS2, -2RS2, RSR2, -RSR2 for temperature range -60 $^{\circ}$ C to +150 $^{\circ}$ C.

Bearings with sealings on both sides in standard design are filled with grease of a temperature range from -30°C to 110°C, whose qualities secure lubrication usually during the whole bearing life at normal operational conditions. Bearings in this design cannot be relubricated.

3 Bearing Arrangement Design

3.1 General Principles of Rolling Bearing Arrangement Design

Rotating shaft or another component arranged in rolling bearings is guided by them in radial as well as in axial direction so that the basic condition, the movement uniqueness, can be fulfilled. The component should be, as far as possible, statically determined, i.e. supported in two points radially and in one point axially.

A typical example of such an arrangement is in Pict. 9, where the shaft is radially guided in two bearings, one of which secures it in axial direction. The locating bearing carries the radial load and simultaneously also the axial load in both directions. Radial bearings that can accomodate combined load are mostly used as locating bearings, which carry, e.g. single row ball bearings, double row angular contact ball bearings, double row self aligning ball bearings, double row spherical roller bearings or single row angular contact ball bearings and tapered roller bearings. The two last mentioned bearing types must be mounted in pairs. The non-locating bearing carries only radial load and must permit certain displacement of the shaft in axial direction so that arising of non-desired axial preload caused by environment (temperature dillatations, production inaccuracies of connecting arrangement components, etc.) can be hindered.

Axial displacement can be secured by displacement between one bearing ring and a machine part, which is directly connected with the bearing, e.g. between outer bearing ring and housing bore (Pict. 9a) or directly in the bearing (Pict. 9b).

Arrangements, in which greater radial and axial loads act by higher rotational speed, should be set up so that the bearing can accommodate only radial or axial forces, see Pict. 10. In these cases it is possible to use for radial guidance some of the radial bearings and for axial guidance those radial bearings which are also able to carry axial load or a pair of these bearings, or double direction thrust bearing, or a pair of single direction thrust bearings. There is a condition where the axially locating thrust bearing should be arranged with radial clearance.

Another, often used solution is the arrangement of two bearings, whose design enables the accommodation both radial and axial loads. Both bearings accommodate alternately the axial load, always according to direction of force acting, and simultaneously they carry also the radial load. An example of this arrangement is shown in Pict. 11.

As a verified design the pair of single row tapered roller bearings or single row angular contact ball bearings are used. There can be used other bearing types which are able to carry the load both in radial and axial direction simultaneously, e.g. separable single row ball bearings or single row cylindrical roller bearings in NJ design, etc.

3.2 Bearing Location

Radial and axial bearing location on the shaft and in the housing bore or another part has a direct connection with the whole arrangement design. When selecting the way of location, the character and acting forces magnitude, the operating temperature in the arrangement and material of mating parts must be taken into account.

Mounting, dismounting and maintenance methods must be taken into consideration when designing mating parts dimensions.

3.2.1 Radial Location of Bearing

The bearing is located in radial direction on the mating cylindrical shaft and housing bore surface. In some cases, adapter or withdrawal sleeves are used by mounting on the shaft, or the bearing can be mounted directly on the tapered shaft.

The correct radial location of the bearing on the shaft significantly influences utilization of its load rating and correct function in arrangement. The following viewpoints are important:

- a) safe location and uniform supporting of bearings
- b) simple mounting and dismounting
- c) displacement of non-locating bearing in axial direction

Basically, both bearing rings should be mounted in tight fits, because only in this way their reliable supporting around the whole periphery and radial fixing against turning can be achieved. To make mounting and dismounting easier or for moving the non-locating ring, a loose fit of one of the rings is permissible.

When selecting correct radial bearing location, following influences must be taken into account.

Circumferential Load - occurs if the respective bearing ring rotates and the load direction is not changed or if the ring rotates and the load does not rotate. The bearing ring periphery is gradually loaded during one revolution. In this case the loaded bearing ring must be always fitted with necessary interference fit.

Point Load - occurs when the bearing ring does not rotate and the external force is constantly directed into the same ring raceway point or if the ring and load rotate at the same rotating speed. The ring subjected to point load can be mounted with loose fit, if the conditions require it.

Indeterminate Load - occurs if the ring is subjected to varying external forces at which directions and load changes cannot be determined (e.g. unbalanced mass, shocks, etc.). Under these conditions in most applications bearings with greater radial clearance should be used.

Load Magnitude - directly influences selection of the interference fit (higher load - larger interference), especially in cases of impact loads. A firm fitting on the shaft or in the housing causes ring deformation, and as a result reduction of radial clearance arises. To secure the necessary radial clearance in the firm arrangement, it is necessary to use bearings with greater radial clearance. Resulting clearance after mounting depends on the bearing type and its dimension.

Bearing Size and Type - determines the size of necessary interference fit of the fitted ring. For smaller sized bearings smaller interference fits are selected, and vice versa. Relatively smaller interferences are used, e.g. for the same sizes of ball bearings in comparison with the cylindrical roller, tapered roller or spherical roller bearings.

Material and Design of Mating Components must be taken into account when determining their production tolerance. Results of practical experience are shown in the following tables. In cases where bearings are mounted into housings made of light metal alloys or on journals of hollow shafts, arrangements with higher interference are selected.

Split housings are not suitable for arrangements with higher interferences, because there is danger of the bearing pinching in the dividing plane.

Heating generating in the bearing can cause loosening of the interference on the journal and turning of the ring. In the housing a converse case can come into being. The heating causes clearance decreasing and subsequently limiting and even stopping of the axial displacement of the non-locating bearing ring. That is why we pay a great deal of attention to this fact when designing an arrangement.

Fitting Accuracy from the point of view of its tolerances and geometric shapes is important because it can be transmitted towards the bearing ring raceways and defines the arrangement accuracy.

When using bearings with normal tolerance class, the tolerance of journal seating surface IT6 is selected, and for housing seating surface tolerance IT7.

For smaller dimensioned ball and cylindrical roller bearings it is possible to use for the journal tolerance IT5 and housing bore IT6.

For bearings in higher tolerance classes, for arrangements with high requirements on accuracy, e.g. spindles of machine tools, the least tolerance class ITS is recommended for the shaft and for housing IT6.

Permissible ovality and conicity deviation and permissible lateral bearing runout of supporting surfaces must be in reference to axis smaller than the diameter tolerance of the journal and bore.

With higher bearing tolerance class also requirements on the seating surface accuracy increase. Recommended values are shown in tables 28 and 29.

Mounting and Dismounting of bearings, if one of the rings is arranged with a loose fit it is simple. If, because of operational reasons, it is necessary to arrange both of the rings with an interference, a suitable bearing type should be selected, e.g. a separable bearing (tapered roller, cylindrical roller, needle roller bearing) or a bearing with tapered bore. Journals for sleeve arrangements of bearings with tapered bore can be in tolerance class h9 or h10, geometric shape should be in tolerance class IT5 or IT7 according to arrangement requirements.

Axial Displacement of Non-Locating Bearing Rings must be secured by all operation conditions. When using a non-separable bearing, displacement of the stationary loaded ring is reached by its fitting with clearance (moveable).

In light metal alloy housings it is necessary, if the outer ring is fitted with clearance, to put a steel bush in the hore.

A reliable displacibility in axial direction is reached by using cylindrical roller bearing type N and NU or radial needle bearing.

Recommended journal and bore diameter tolerances of the mating components for radial and thrust bearings are shown in tables 30 to 35.

3.2.2 Axial Securing of Bearing

Inner bearing ring with cylindrical bore arranged on the journal with interference fit (fixed) is usually secured in the axial direction by means of a locknut, end-plate or snap ring, when the other face is usually supported by the shaft shoulder. Surrounding parts are used as abutment faces for inner rings, and if necessary, spacing rings are inserted between this component and bearing inner ring. Examples of axial bearing securing are shown in Pict. 12.

Recommended S	Shape Accuracies of Beari	ng Seating Fits	Table 28
Bearing Tolerance Class	Fitting Location	Permissible Ovality Deviation	Permissible Lateral Runout of Carrying Surfaces in Reference to Axis
	shaft	<u>IT5</u> 2	ІТЗ
P0, P6			
	housing	<u>IT6</u> 2	IT4
	shaft	<u>IT3</u> 2	IT2
P5, P4			
	housing	<u>IT4</u> 2	ІТ3

Standard	Tolerances IT2 to IT6					Table 29
	Nominal Diameter			Tolerance	e Class	
over	to	IT2	IT3	IT4	IT5	IT6
mm		μm				
6	10	1,5	2,5	4	6	9
10	18	2,0	3,0	5	8	11
18	30	2,5	4,0	6	9	13
30	50	2,5	4,0	7	11	16
50	80	3,0	5,0	8	13	19
80	120	4,0	6,0	10	15	22
120	180	5,0	8,0	12	18	25
180	250	7,0	10,0	14	20	29
250	315	8,0	12,0	16	23	32
315	400	9,0	13,0	18	25	36
400	500	10,0	15,0	20	27	40

Radial Bearing Shaft Diameter Tolerances (Valid for Solid Steel Shafts)									
		Journal Diameter [mm]							
Operating Conditions	Arrangement Examples	Cylindrical, Ball Needle 1) Spherical Bearings Tapered Roller Roller Bearings Bearings	Tolerance						
Inner Ring Point Load									
Light and Normal Load P _r ≦0,15 C _r	Free wheels, sheaves, belt pulleys	All Diameters	g6 ²⁾						
Heavy Impact Load P, >0,15 C,	Industrial truck wheels, tension pulleys		h6						
Inner Ring Circumferential Load or Indeterminite Load									
Light and Variable Load Pr ≤0,07 C	transport equipments, ventilators	(18) to 100 ≤40 (100) to 200(40) to 140	j6 k6						
Normal and Heavy Load Pr >0,07 C _r pumps, combustion motors, gear boxes, woodworking machines	General enginnering, electric motors, turbines, (100) to 140 (140) to 200	≦18	j5 k5 (k6) ³⁾ m5 (m6) ³⁾ m6 n6 p6						
Extremely Heavy Load, Impacts, Complicated Operating Condition: Pr >0.15 Cr	Axle bearings for railway s vehicles, traction motors, rolling mills	- (50) to 140 (50) to 100 - (140) to 500 (100) to 500 - >500 >500	n6 ⁴⁾ p6 ⁴⁾ r6 (p6) ⁴⁾						
High Arrangement Accuracy under Light Load Pr ≦0,07 Cr	Machine tools	≦18 (18) to 100 ≦40 - (100) to 200 (40) to 140 - (140) to 200 -	h5 ⁵⁾ j5 ⁵⁾ k5 ⁵⁾ m5						
Exclusively Axial Load		All Diameters	j6						
Bearings with Tapered Bore and A	dapter or Withdrawal Sleeve								
All Kinds of Load	General arrangements, axle bearings for railway vehicles.	All Diameters	h9/IT5						
	Not complicated arrangements		h10/IT7						

- Tolerances for needle roller bearings without rings, see page 133
 Tolerance f6 can be selected for securing axial displacibility
- 3) Tolerances in brackets are selected usually for single row tapered roller bearings or at low rotational speeds where tolerance dispersion is not significant
- 4) It is necessary to use bearings with higher radial clearance than normal
- 5) Tolerances for single row ball bearings in tolerance classes P5 and P4 are shown on page 89

Housing Bore Diameter (Valid for Steel, Cast and				Table 31					
Operating Conditions	Displacibility of Outer Ring	Housing	Arrangement Examples	Tolerance					
Outer Ring Circumferentia	l Load								
Heavy Impact Load P>0.15 C, Thin Walled Housings	not dispacable	one-part	Wheel hubs with cylindrical roller bearings, big end bearings	P7					
Normal and Heavy Load P>0.07 C	not dispacable		Wheel hubs with ball bearings, crane travel wheels, crankshaft bearings	N7					
Light and Variable Load P, ≦0.07 C,	not dispacable		Conveyor rollers, tension pulleys	M7					
Indeterminite Load									
Heavy Impact Load P,>0.15 C,	not dispacable		Traction motors	M7					
Heavy and Normal Load P>0.07 C	As a rule, not displacable	one-part	Electric motors, pumps, crankshafts	K7					
Light and Varying Load P, ≦0.07 C,	As arule, displacable		Electric motors, pumps, crankshafts	J7					
Accurate Arrangement									
Light Load P, ≦0.07 C,	As a rule, not displacable		Cylindrical roller bearings for machine tools	K6 1)					
' '	Displacable	one-part	ball bearings for machine tools.	J6 ²⁾					
0	Easily displacable		Small electric motors	H6					
Outer Ring Point Load			0	117.2\					
Any Load			General engineering, axle bearings of railway vehicles	H7 ³⁾					
Light and Normal Load $P_r \leq 0.15 C_r$	Easily displacable	One-part or two-part	General engineering, less complicated engineering	H8					
			Drying rollers of paperworking machines, big electric motors	G7 ⁴⁾					

- 1) For heavy loads tighter tolerances are selected M6 or N6. For cylindrical roller bearings with tapered bore tolerances K5 or M5.
- 2) Tolerances for single row ball bearings in tolerances P5 and P4 see page 89.
- 3) For bearings with outer diameter D < 250 mm, with temperature difference between outer ring and housing over 10 °C, tolerance G7 is selected
- 4) For bearings with outer diameter D > 250 mm, with temperature difference between outer ring and housing over 10 °C, tolerance F7 is selected

Journal Diameter Tolerance for Thrust Bearings Table 32									
Bearing Type	Load		Journal Diameter [mm]	Tolerance					
Thrust Ball Bearings				j6					
	Exclusively Axial Load		All Diameters						
Thrust Spherical				j6					
Roller Bearings									
	Simultaneously Axial	Stationary Load of Shaft	All Diameters	j6					
	and Radial Loads	Washer or Indeterminite Lo	ad						
		Rotating Load	≦200	k6					
		of Shaft	(200) to 400	m6					
		Washer	> 400	n6					

Housing Bore Diameter Tolerances for Thrust Bearings									
Bearing Type	Load		Note	Tolerance					
			In common						
Thrust Ball Bearings	Exclusively Axial Load	1	arrangements housing	H8					
			washer can have clearance						
			Housing washer mounted	-					
			with radial clearance						
Thrust Spherical	Simultaneously	Stationary Load		H7					
Roller Bearings	Axial	or Indeterminite Load							
	and Radial Load	of Housing Washer							
		Rotating Load		M7					
		of Housing Washer							

Journa	l Diamet	er Tole	rance	Limitin	g Devi	ations										Tabl	e 34
Journal Diamete		f6		g5		g6		h5		h6		j5		j6(js6)	k5	
over	to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
mm		μm															
1	3	-6	-12	-2	-6	-2	-8	0	-4	0	-6	+2	-2	+4	-2	+4	0
3	6	-10	-18	-4	-9	-4	-12	0	-5	0	-8	+3	-2	+6	-2	+6	+1
6	10	-13	-22	-5	-11	-5	-14	0	-6	0	-9	+4	-2	+7	-2	+7	+1
10	18	-16	-27	-6	-14	-6	-17	0	-8	0	-11	+5	-3	+8	-3	+9	+1
18	30	-20	-33	-7	-16	-7	-20	0	-9	0	-13	+5	-4	+9	-4	+11	+2
30	50	-25	-41	-9	-20	-9	-25	0	-11	0	-16	+6	-5	+11	-5	+13	+2
50	80	-30	-49	-10	-23	-10	-29	0	-13	0	-19	+6	-7	+12	-7	+15	+2
80	120	-36	-58	-12	-27	-12	-34	0	-15	0	-22	+6	-9	+13	-9	+18	+3
120	180	-43	-68	-14	-32	-14	-39	0	-18	0	-25	+7	-11	+14	-11	+21	+3
180	250	-50	-79	-15	-35	-15	-44	0	-20	0	-29	+7	-13	+16	-13	+24	+4
250	315	-56	-88	-17	-40	-17	-49	0	-23	0	-32	+7	-16	+16	-16	+27	+4
315	400	-62	-98	-18	-43	-18	-54	0	-25	0	-36	+7	-18	+18	-18	+29	+4
400	500	-68	-108	-20	-47	-20	-60	0	-27	0	-40	+7	-20	+20	-20	+32	+5
500	630	-76	-120	-	-	-22	-66	-	-	0	-44	-	-	+22	-22	-	-
630	800	-80	-130	-	-	-24	-74	-	-	0	-50	-	-	+25	-25	-	-
800	1000	-86	-142	-	-	-26	-82	-	-	0	-56	-	-	+28	-28	-	-
1000	1250	-98	-164	-	-	-28	-94	-	-	0	-66	-	-	+33	-33	-	-

Journal Diamete		k6		m5		m6		n6		p6		h91)		IT5	h10	1)	IT7
over	to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower		upp	er lowei	r
mm		μm															
1	3	+6	0	+6	+2	+8	+2	+10	+4	+12	+6	0	-25	4	0	-40	10
3	6	+9	+1	+9	+4	+12	+4	+16	+8	+20	+12	0	-30	5	0	-48	12
6	10	+10	+1	+12	+6	+15	+6	+19	+10	+24	+15	0	-36	6	0	-58	15
10	18	+12	+1	+15	+7	+18	+7	+23	+12	+29	+18	0	-43	8	0	-70	18
40	00	. 45	. 0		. 0	. 04		. 00		. 0.5	. 00	0			_	0.4	0.4
18	30	+15	+2	+17	+8	+21	+8	+28	+15	+35	+22	0	-52	9	0	-84	21
30	50	+18	+2	+20	+9	+25	+9	+33	+17	+42	+26	0	-62	11	0	-100	25
50 80	80 120	+21	+2	+24	+11	+30	+11	+39	+20	+51 +59	+32	0	-74 -87	13 15	0	-120 -140	30 35
00	120	±25	⊤ಎ	+20	T 13	+35	+13	T45	±23	+59	+3/	U	-07	15	U	-140	33
120	180	+28	+3	+33	+15	+40	+15	+52	+27	+68	+43	0	-100	18	0	-160	40
180	250	+33	+4	+37	+17	+46	+17	+60	+31	+79	+50		-115	20	0	-185	46
250	315	+36	+4	+43	+20	+52	+20	+66	+34	+88	+56		-130	23	0	-210	52
315	400	+40	+4	+46	+21	+57	+21	+73	+37	+98	+62		-140	25	0	-230	57
400	500	+45	+5	+50	+23	+63	+23	+80	+40	+108	+68	0	-155	27	0	-250	63
500	630	+44	0	-	-	+70	+26	+88	+44	+122	+78	0	-175	30	0	-280	70
630	800	+50	0	-	-	+80	+30	+100	+50	+138	+88	0	-200	35	0	-320	80
800	1000	+56	0	-	-	+90	+34	+112	+56	+156	+100	0	-230	40	0	-360	90
1000	1250	+66	0	-	-	+106	+40	+132	+66	+186	+120	0	-260	46	0	-420	105

For journals made in tolerance h9 and H10 for bearings with adapter or withdrawal sleeves deviations of roundness and cylindricity must not exceed basic tolerances IT5 and IT7

Bore D	iameter '	Tolerand	e Limit	ing Devi	iations									Tab	le 35
Bore No		F7		G6		G7		H6		H7		H8		J6(Js	6)
over	to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower
mm		μm													
6	10	+28	+13	+14	+5	+20	+5	+9	0	+15	0	+22	0	+5	-4
10	18	+34	+16	+17	+6	+24	+6	+11	0	+18	0	+27	0	+6	-5
18	30	+41	+20	+20	+7	+28	+7	+13	0	+21	0	+33	0	+8	- 5
30	50	+50	+25	+25	+9	+34	+9	+16	0	+25	0	+39	0	+10	-6
50	80	+60	+30	+29	+10	+40	+10	+19	0	+30	0	+46	0	+13	-6
80	120	+71	+36	+34	+12	+47	+12	+22	0	+35	0	+54	0	+16	-6
120	180	+83	+43	+39	+14	+54	+14	+25	0	+40	0	+63	0	+18	-7
180	250	+96	+50	+44	+15	+61	+15	+29	0	+46	0	+72	0	+22	-7
250	315	+108	+56	+49	+17	+69	+17	+32	0	+52	0	+81	0	+25	-7
0.45	400			. = 4					•				_		_
315	400	+119	+62	+54	+18	+75	+18	+36	0	+57	0	+89	0	+29	-7
400	500	+131	+68	+60 +66	+20	+83	+20	+40	0	+63	0	+97 +110	0	+33	-7
500	630	+146	+76	+66	+22	+92	+22	+44	0	+70	0	+110	0	+22	-22
630	800	+160	+80	+74	+24	+104	+24	+50	0	+80	0	+125	0	+25	-25
800	1000	+176	+86	+82	+24	+116	+26	+56	0	+90	0	+140	0	+28	-28
1000	1250	+203	+98	+94	+28	+133	+28	+66	0	+105	0	+165	0	+33	-33
1000	1200	1203	1 30	134	, 20	. 100	120	100	U	. 100	U	. 100	U	, 00	-00
1250	1600	+235	+110	+108	+30	+155	+30	+78	0	+125	0	+195	0	+39	-39
1200	1000	. 200	110	100	- 00	100	. 00	., 0	0	120	U	100	U	.00	-00

Bore No		J7(Js7)	K6		K7		M6		M7		N7		P7	
Diamete over	er to	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	upper	lower	uppe	r lower
mm		μm													
6	10	+8	-7	+2	-7	+5	-10	-3	-12	0	-15	-4	-19	-9	-24
10	18	+10	-8	+2	-9	+6	-12	-4	-15	0	-18	-5	-23	-11	-29
18	30	+12	-9	+2	-11	+6	-15	-4	-17	0	-21	-7	-28	-14	-35
						_									
30	50	+14	-11	+3	-13	+7	-18	-4	-20	0	-25	-8	-33	-17	-42
50	80	+18	-12	+4	-15	+9	-21	-5	-24	0	-30	-9	-39	-21	-51
80	120	+22	-13	+4	-18	+10	-25	- 6	-28	0	-35	-10	-45	-24	-59
120	180	+25	-14	+4	-21	+12	-28	-8	-33	0	-40	-12	-52	-28	-68
180	250	+30	-16	+5	-24	+13	-33	-8	-37	0	-46	-14	-60	-33	-79
250	315	+36	-16	+5	-27	+16	-36	-9	-41	0	-52	-14	-66	-36	-88
200	0.0						00	Ū	•••		02				00
315	400	+39	-18	+7	-29	+17	-40	-10	-46	0	- 57	-16	-73	-41	-98
400	500	+43	-20	+8	-32	+18	-45	-10	-50	0	-63	-17	-80	-45	-108
500	630	+35	-35	0	-44	0	-70	-26	-70	-26	-96	-44	-114	-78	-148
630	800	+40	-40	0	-50	0	-80	-30	-80	-30	-110	-50	-130		-168
800	1000	+45	-45	0	-56	0	-90	-34	-90	-34	-124	-56	-146	-100	
1000	1250	+52	-52	0	-66	0	-105	-40	-106	-40	-145	-66	-171	-120	-225
1050	4000		00	_		_	405	40	400		470	70	000		205
1250	1600	+62	-62	0	-78	0	-125	-48	-126	- 48	-173	-78	-203	-140	-265

Examples of axial locating of bearings with tapered bore seated directly on the tapered journal or by means of an adapter or withdrawal sleeve are in Pict. 13.

Permissible bearing axial load fixed by an adapter sleeve on smooth shafts without bearing resting on the shaft shoulder is calculated according to equation:

F = 3Bd	ſΝ	1

F _a	-	permissible bearing axial load	[N]
В	-	bearing width	[mm]
d	-	bearing bore diameter	[mm]

If the axial displacement of the outer ring in the housing is not required, then we can use solution, when the face supporting or seating surface of the bearing cover, nut or snap ring are used. Bearings with grooves for snap ring (NR) do not require much space and their securing is simple. Examples - see Pict. 14.

Abutment dimensions for each bearing shown in this publication are in the dimension tables.

3.3 Sealing

Sealing of the bearing space is very important, because damaging materials which can be found in the bearing environment influence it and often can cause its breakdown. Sealing also has an opposite function - it prevents the lubricant leaking out of the bearing and arrangement space. That is why sealing must always be designed with regard to operating conditions of machines or equipments, arrangement design, lubricating method, maintenance possibility and economic questions concerning production and utilization.

3.3.1 Non-Contact Sealing

Between non-rotating and rotating parts there is only a narrow gap when using this sealing. It is filled with grease. Using this sealing, wear of components from friction does not occur and that is why this sealing can be used for the highest rotational speeds and for high operating temperatures. Examples of a gap sealing are in Pict. 15.

Another very effective sealing is the labyrinth sealing which can improve the sealing effect by a greater number of labyrinths or prolongation of sealing gaps. Examples - see Pict. 16.

3.3.2 Rubbing Sealing

Rubbing sealing is created of elastic or soft, but sufficiently impermiable material, which is inserted between the rotating and firm part. Such a sealing is usually cheap and is suitable for various designs. The disadvantage is the sliding friction of the contacting surfaces, and there fore there is limited utilization for high rotational speeds.

Sealing with a felt ring is the simplest (Pict. 17). It is suitable for operating temperature -40 ° to +80 °C and for peripheral speeds to 7 m.s⁻¹ and sliding surface roughness max. $R_a = 0.16$, hardness min. 45 HRC or hard chromium plating. Dimensions of the felt rings are given by corresponding national standards.

A very wide-spread way of sealing is sealing with shaft washers (Pict. 18). Radial shaft seal washers are made of rubber or other suitable plastic reinforced by steel sheet reinforcement. According to the material used they are suitable for operating temperature from -30 ° to +80 °C. Permissible peripheral speed depends on sliding surface roughness:

- to 2 m.s⁻¹ is roughness max. $R_1 = 0.8$
- to 4 m.s⁻¹ is roughness max. $R_3^0 = 0.4$
- to 12 m.s⁻¹ is roughness max. $R_1 = 0.2$.

Except for mentioned most commonly used sealing rings there are rubbing sealing designs which use the just formed sealing rings made of rubber, plastic, etc., or special spring rings. This sealing is chosen either for applications with high requirements on bearing space sealing (great environment pollution, high temperature, chemical substance influence), or for economic reasons by mass or series production. Examples – see Pict. 19.

3.3.3 Combined Sealing

Increase sealing effect can be reached by non-contact and rubbing sealing combination. Such a sealing is recommended for wet and polluted environment. Example – see Pict. 20.

4. Bearing Lubrication

The correct bearing lubrication has a direct influence on the bearing life. Lubricant creates between the rolling element and bearing ring a carrying lubricating film which hinders their metal contact. It lubricates surfaces where friction arises, it has cooling effect, it protects the bearing from corrosion and in many cases seals the bearing space.

In the most cases - approximately 90%, bearings are lubricated with grease or oil, in rare exceptions by other lubricating means. When deciding which lubricant and which lubrication type should be used, operating conditions, characteristic qualities of the lubricant, equipment design and operating economy should be taken into account.

4.1 Grease Lubrication

In the design practice grease lubrication is preferred to oil lubrication from the point of view of arrangement simplicity, utilization of the sealing capabilities and simple maintenance.

For reliable bearing operation 1/3 to 1/2 of its free space is filled with grease at the first assembly. A greater grease amount has negative influence on the operation. Higher passive resistances cause the inner bearing space warming up undesirabely, which can lead to its breakdown. Bearings making only a small number of revolutions during operation, from the point of view of corrosion protection should be completely filled.

4.1.1 Relubrication Interval

Relubrication interval is the period during which the grease has the necessary lubricating properties. After this period bearing must be relubricated, and old lubricant must be removed from the bearing space completely.

Relubricating period depends on the bearing type and size, rotational speed, operating temperature and grease quality. The recommended relubrication period for individual bearing types at normal load ($P \le 0.15$ C) and normal operational conditions is shown in diagrams in Pict. 21 and 22. The diagrams are valid for common greases and temperatures to +70°C. For temperatures over +70°C, the relubrication period is shortened for each 15°C on the half of original value. For temperatures under +40°C the relubrication period can be doubled.

For small sized, especially single row ball bearings, the relubrication periods are several times longer than the bearing life, that is why the bearings are, as a rule, not relubricated.

For this reason it is advantageous to use these bearings shielded or sealed on both sides and filled with grease. For some rotational speeds the relubrication period is out of the diagram curve, i.e. the permissible limit for grease lubrication has been reached and oil lubrication should be used.

Necessary grease quantity for relubrication is calculated from the equation:

Q = 0,005 DB	[9]
	[g] [mm] [mm]
	Q = 0,005 DB

For bearings with higher rotational speed requiring a more frequent relubrication, it is necessary to remove the used lubrication from the bearing space so that temperature increase should not occur. For this reason the grease escape valve is suitable.

4.1.2 Bearing Greases

Bearing greases are produced most often of quality mineral or synthetic oils (sometimes with additives), thickened with fatty acid metallic soaps. Greases must have good lubricating properties and high chemical, temperature and mechanical stability. The grease list of bearing lubricants is in Table 36.

Rolling Bearing G	rease Properties			Table 36
Kind of Grease			Properties	
Thickening	Basic Oil	Operating Temp	erature	Resistance against
Application Agent		Extent [°C]	Water	
lithium soap	mineral	-20 ÷ 130	resistant	multi-purpose lubricant
lime soap	mineral	-20 ÷ 50	high resistance	good sealing effect against water
soda soap	mineral	-20 ÷ 100	irresistant	emulsifies with water
aluminium soap	mineral	-20 ÷ 70	resistant	good sealing effect against water
complex lithium	mineral	-20 ÷ 150	resistant	multi-purpose lubricant
soap				
complex lime soap	mineral	-30 ÷ 130	high resistance	multi-purpose lubricant suitable for higher temperatures and load
complex	mineral	-20 ÷ 130	resistant	suitable for higher
soda soap				temperature and load
complex		-20 ÷ 150	mineral	suitable for higher
aluminium soap				temperature and load
complex	mineral	-30 ÷ 140	resistant	suitable for higher
barium soap				temperature and load
bentonite	mineral		resistant	suitable for high temperatures at low rotational speed
polyurea	mineral	-20 ÷ 160	resistant	suitable for high temperatures
				at medium rotational speed
lithium soap	silicon	-40 ÷ 170	high resistance	suitable for wide temperature range at medium rotational speed
speed complex barium soap	ester	-60 ÷ 140	resistant	suitable for higher temperatures and higher rotational speeds

4.2 Nil Lubrication

Oil lubrication is used, when operating rotational speed is so high that the grease relubrication period is too short. Another reason can also be the necessity of heat transfer from the bearing, or the high temperature of environment, which does not enable utilization of grease, or if surrounding parts are already lubricated by oil (e.g. geared wheels in the gear box). Except for some cases, spherical roller thrust bearings are always lubricated by oil.

When oil lubricating, lubricating must be secured both at starting and during operation. Excess oil increases temperature and bearing temperature.

Oil feed into bearing is secured in various design ways, out of which oil bath lubrication with oil level reaching middle of the lowest rolling element, oil circulation lubrication, jet lubrication, oil mist lubrication etc., are the most common.

4.2.1 Bearing Oils

For bearing lubrication mostly refined oils with good chemical stability which can be improved by antioxidizing agents are used.

The decisive oil property is kinematic viscosity which decreases with increasing temperature. Suitable oil viscosity \mathbf{v}_1 can be stated according to the diagram in Pict. 23 in dependence on the bearing mean diameter $\mathbf{d}_s = (d+D)/2$ and rotational speed n. If the operating temperature is known or it can be found out, according to the diagram in Pict. 24 suitable oil and viscosity \mathbf{x} at internationally standardized temperature 40 °C being necessary for calculation of ratio \mathbf{x} is determined.

By ratio $\varkappa < 1$ it is recommended to use EP oil with additives which improve the oil film load rating. By value \varkappa decrease under 0.4 oils with EP additives are always used.

If the ratio ${f x}$ is greater than 1, improved arrangement reliability is reached in operation.

Example:
- bearing d = 180 mm, D = 320 mm, d = 250 mm

- rotational speed n =500 min⁻¹
- Inrarional zheen 11 200 IIIIII
- presumed operating temperature 60 °C

For these conditions according to diagram in Pict. 23 the minimum kinematic viscosity is $\upsilon_{\text{\tiny I}}$ = 17 mm².s-¹.

If the operating temperature is 60 °C, the oil selected according to the diagram in Pict. 24 at standardized temperature 40 °C must have kinematic viscosity v min. 35 mm².s⁻¹.

For thrust spherical roller bearings the lubricating oil kinematic viscosity is approximately stated in dependence on n x d, where n is the bearing rotational speed in revolutions per minute and d is the bore diameter in mm, according to table 37. Lower values are valid for bearings with lower load, for which is valid $P_a \leq 0.1 C_a$. Higher values are valid for $P_a > 0.1 C_a$.

Oil Viscosity for Spherical Roller Thrust Bearings		Table 37
d.n	Kinematic Oil Viscosity	
	mm²s⁻¹ at 40°C	
1 000	250 to 550	
10 000	100 to 250	
100 000	45 to 100	
200 000	30 to 80	

4.3 Lubrication with Solid Lubricants

Solid lubricants are used for bearing lubrication when the grease or oil cannot fulfil the requirements for reliable lubrication in conditions of limiting friction or from the viewpoint of high operating temperatures, chemical influences, etc.

5. Mounting and Dismounting of Rolling Bearings

A very important requirement besides using the suitable mounting or dismounting tool is to make sure these tools are clean and the whole operation can be carried out in clean working environment. If this is not fulfilled, the impuritues have decisive influence on the bearing behaviour in operation and can also cause bearing breakdown. In the same way the cleanliness conditions must be fulfilled by the preparation of all lubricating means and components connected with the arrangement.

New bearings are preserved by manufacturer with preservatives which need not be removed before mounting. Bearings should be taken out just before mounting. Rarely the preservative is removed from the bearing. For this operation are used:

- gas with 5 to 10% oil additive
- henzol
- diesel fuel
- water-free oil

After washing the bearing should be oiled, preserved from pollution and mounted as soon as possible. Before mounting, the seating surfaces dimensions should be checked for cleanliness or damage.

Mounting of Bearings with Cylindrical Bore

Bearings with cylindrical bore are mounted on the shaft at room temperature or heated. Dimensionally smaller bearings are mostly mounted at room temperature.

The force necessary for mounting is reached by hammer blows or more suitably by press. In both cases mounting jig is used. At mounting it is not permissible to transfer the mounting force through rolling elements. That is why the jig must always be placed on the ring or both rings being mounted while the mounting force is acting.

Heat mounting is used for greater bearings whose rings are fitted with a greater interference. Maximum heating temperature of the bearing is 100 °C.

Mounting of Bearings with Tapered Bore

Bearings with a tapered bore are mounted on the shaft by means of adapter or withdrawal sleeves or are seated directly on the tapered journal. Reliable mounting is reached either by pressing the inner ring by a nut, or by sufficient inserting of the sleeve. In both cases the inner ring expands and bearing radial clearance decreases.

When mounting double row self aligning ball bearings the adapter sleeve nut can be tightened, but only to such an extent that the outer ring can be easily turned and swivelled.

A double row spherical roller bearing is mounted with a greater interference. Mounting reliability is checked according to radial clearance reduction by means of feeler gauges or measuring the axial displacement of the inner ring on the journal or tapered sleeve. Initial position for measuring this displacement is reached, when the contact surfaces (of the ring, sleeve, shaft) seat on each other on the whole seating surface. Values for mounting double row spherical roller bearings with tapered bore are shown in table 38.

		ble Row S	pherical Re			<u> </u>				Table
Bore Dia	ameter	Radial		Axial Disp	lacement on	Taper 1: 12	2	Bearing Mi		
		Cleara						Permissib		Clearance
d		Reduc	tion	on Shaft		on Slee	eve			earanced
over	to	min	max	min	max	min	max	normal	СЗ	C4
nm		μm		mm				μm		
30	40	20	25	0.35	0.4	0.35	0,45	15	20	40
40	50	25	30	0,4	0,45	0,45	0,5	20	30	50
50	65	30	40	0,45	0,6	0,5	0,7	25	35	55
0.5	80	40	50	0.0	0.75	0.7	0.05	0.5	40	70
65		40		0,6	0,75	0,7	0,85	25	40	70
80	100	45	60	0,7	0,9	0,75	1	35	50	80
100	120	50	70	0,75	1,1	0,8	1,2	50	65	100
120	140	65	90	1,1	1,4	1,2	1,5	55	80	110
140	160	75	100	1,2	1,6	1,3	1,7	55	90	130
160	180	80	110	1,3	1,7	1,4	1,9	60	100	150
180	200	90	130	1,4	2	1,5	2,2	70	100	160
200	225	100	140	1,6	2,2	1,7	2,4	80	120	180
225	250	110	150	1,7	2,4	1,8	2,6	90	130	200
250	280	120	170	1,9	2,7	2	2,9	100	140	220
280	315	130	190	2	3	2,2	3,2	110	150	240
315	355	150	210	2,4	3,3	2,6	3,6	120	170	260
355	400	170	230	2,6	3,6	2,9	3,9	130	190	290
400	450						,			
		200	260	3,1	4,1	3,4	4,4	130	200	310
450	500	210	280	3,3	4,4	3,6	4,8	160	230	350
500	560	240	320	3,7	5	4,1	5,4	170	250	360
560	630	260	350	4	5,4	4,4	5,9	200	290	410
630	710	300	400	4,6	6,2	5,1	6,8	210	310	450
710	800	340	450	5,3	7	5,8	7,6	230	350	510
800	900	370	500	5,7	7,8	6,3	8,5	270	390	570

Rolling Bearings Dimension Tables

Single Row Deep Groove Ball Bearings	
Single Row Angular Contact Ball Bearings	
Double Row Angular Contact Ball Bearings	D O
Double Row Self-Aligning Ball Bearings	8
Single Row Cylindrical Roller Bearings	
Double Row Cylindrical Roller Bearings	
Single Row Needle Roller Bearings	
Double Row Spherical Roller Bearings	
Tapered Roller Bearings	
Thrust Ball Bearings	<u> </u>
Spherical Roller Thrust Bearings	Æ
Insert Ball Bearing Units	
Spherical Plain Bearings	
Accessories of Rolling Bearings	F
Rolling Elements	00
Special Rolling Bearings	

Single Row Deep Groove Ball Bearings

Single row deep groove ball bearings are the most common bearing type and are designed as non-separable and are without a filling slot. Good conformity to raceways is achieved by optimum size and number of balls and relatively high load ratings are achieved. They accommodate both radial and axial loads in both directions and are suitable for high rotational speeds.

Outer ring design of separable single row ball bearings - type E and BO enables separate mounting of inner ring with cage and rolling elements. The bearings are produced from bore diameter d = 20 mm and are suitable for smaller loads and high-rotational applications.

Boundary Dimensions

Boundary dimensions except for separable single row ball bearings - type E and BO correspond to the standard ISO 15.

Snap ring groove dimensions comply with the standard ISO 464.

Designation

Bearing designation in standard design and common modifications (Z, RS, 2Z, 2RS, N) are shown in the dimension tables. Deviation from standard design is designated by prefixes and suffixes (section 2.2).

Shielded or Sealed Bearings

Single row deep groove ball bearings with shields or seals on one or both sides are produced with metal shields (Z, ZZ, ZR, ZZR) or seals (RS, ZRS, RSR, ZRSR) as non-separable units.

The shields create a non-contact sealing. Sealing rings are made of rubber, vulcanized on a metal reinforcing ring and act in the bearing as an effective friction type sealing.

Bearings with sealings on both sides are filled with grease which assures reliable lubricating conditions for the whole bearing life. These bearings are suitable for temperature ranges

of -30°C to +110°C. Delivery of bearings with another grease must be agreed with the supplier in advance.

Bearings with Snap Ring Groove

For simple securing against axial displacement in the housing single row ball bearings with snap groove on outer ring are manufactured (N). When the bearing is delivered with inserted snap ring, it is designated (NR). Bearings with a snap ring groove can also be delivered with assembled seals.

Cage

Single row ball bearings in standard design usually have a cage according to the table. Material symbol (J, Y, M, F) and design of the cage are not mostly indicated.

Bearings with Pressed Steel or Brass Cage	Bearings with Machined Brass or Steel Cage
d<10mm (619/2 to 629)1)	-
-	61926
16001 to 16030	-
6000 to 6034	6036 to 6040
6200 to 6230	6232 to 6240
6300 to 6324	6326 to 6330
6403 to 6417	6418
E15 to E20, BO17	
1) Bearing 618/8 is made with a solid cage made of	polyamide (TNH)

For special arrangements bearings with different cages made of various materials are produced: polyamide (TNH, TNB) and textite (TB). Using of these bearings should be discussed in advance.

Tolerance

Single row ball bearings are produced in normal tolerance class PO, this symbol is not indicated. Limiting values for dimension and operation accuracy comply with the standard ISO 199 and ISO 492. Exceptions are only separable single row ball bearings - type E and BO, outer diameter of which has limiting deviation D \pm 0.01/0.00 mm.

Radial Clearance

Single row ball bearings delivered without radial clearance designation are produced with normal radial clearance. Radial clearance values comply with the standard ISO 5753.

Vibration Level

Commonly manufactured single row ball bearings have a normal vibration level checked by the manufacturer. Bearings in tolerance class P5 and higher have the vibration level C6. For special arrangements bearings with reduced vibration level C6, C06 and C66 are produced.

Tapered Bore

For some less demanding arrangements some sizes of single row ball bearings - type 62 and 63 with tapered bore, taper 1:12 can be produced. Fixing of bearings on the cylindrical journal is made by means of adapter sleeves or directly on the tapered journal.

Bearings for Arrangements at High Operating Temperatures

For arrangements working at operating temperature to 400°C single row bearings with adequately great radial clearance according to technical conditions between producer and customer are delivered.

These bearings have reduced basic dynamic load rating in average of 50% and basic static load rating of 30% in comparison with bearings in standard design.

Misalignment

For single row ball bearings only small mutual misalignment of bearing rings is permissible, therefore alignment deviation of seating surfaces can be very small. Misalignment causes additional loading of the bearing and thus its life is shortened.

Values of permissible misalignment at normal operating conditions are shown in the table.

Bearing Type	Load light (F _r <0.15C _{or})	heavy (F _r ≥0.15C _{or})
618, 619, 160, 60 62, 63, 64	2' to 6' 5'to 10'	5'to 10' 8'to 16'

Radial Equivalent Dynamic Load Single Row Ball Bearings

$$P_r = XF_r + YF_a$$
 [kN]

	Radial Clearance														
	normal					C3					C4				
F _a		F _a /F _r ≦	€e	F _a /F _r >0	е		F _a /F _r ≦	е	F _a /F _r >6	Э		F _a /F _r ≦	е	F _r /F _r >6)
$\frac{F_a}{C_{or}}$	е	X	Υ	X	Υ	е	X	Υ	X	Υ	е	X	Υ	X	Υ
	е	Χ	Υ	Χ	Υ	е	Χ	Υ	Χ	Υ	е	Χ	Υ	Χ	Υ
0.025	0.22	1	0	0.56	2.0	0.31	1	0	0.46	1.75	0.40	1	0	0.44	1.42
0.040	0.24	1	0	0.56	1.8	0.33	1	0	0.46	1.62	0.42	1	0	0.44	1.36
0.070	0.27	1	0	0.56	1.6	0.36	1	0	0.46	1.46	0.44	1	0	0.44	1.27
0.130	0.31	1	0	0.56	1.4	0.41	1	0	0.46	1.30	0.48	1	0	0.44	1.16
0.250	0.37	1	0	0.56	1.2	0.46	1	0	0.46	1.14	0.53	1	0	0.44	1.05
0.500	0.44	1	0	0.56	1.0	0.54	1	0	0.46	1.00	0.56	1	0	0.44	1.00

Factor X and Y values are valid, if the bearings on the journal and in the housing will be fitted in tolerances recommended for small and medium loads (tables 28 and 29) and during operation significant reduction of radial clearance due to operating temperature does not come into being (temperature gradient between inner and outer ring max. 10°C).

Separable Single Row Ball Bearings:

$$\begin{array}{ll} P_r = F_r & \text{for } F_a \ / \ F_r \leqq 0.2 & \text{[kN]} \\ P_r = 0.5 \ F_r + 2.5 \ F_a & \text{for } F_a \ / \ F_r > 0.2 & \text{[kN]} \end{array}$$

Radial Equivalent Static Load:

Single Row Deep Groove Ball Bearings:

$$P_{nr} = 0.6F_r + 0.5F_a$$
 $(P_{nr} \ge F_r)$ [kN]

Separable Single Row Ball Bearings:

$$\mathsf{P}_{\mathrm{or}} = 0.9\mathsf{F}_{\mathrm{r}} + 0.3\mathsf{F}_{\mathrm{a}} \qquad \qquad (\mathsf{P}_{\mathrm{or}} \geqq \mathsf{F}_{\mathrm{r}}) \qquad \qquad [\mathsf{kN}]$$

Single Row Deep Groove Ball Bearings d = 2 to 17 mm

Dim	ensio	ns		Basic Load	Rating Static	Fatique load	Limiting Spee		Bearing Designation
d	D	В		Dynamic		limit	ior Eubrication	II WILLI	Designation
ŭ	D	Ь	r _s min	C _r	C _{or}	P _u	Grease	Oil	
mm				kN		kN	min ⁻¹		
2	6	2.3	0.10	0.279	0.090	0.004	63000	79000	619/2
3	10	4.0	0.15	0.645	0.229	0.010	40000	50000	623
4	13	5.0	0.20	1.168	0.412	0.019	38000	45000	624
•	16	5.0	0.30	1.875	0.677	0.031	35000	42000	634
5	13	4.0	0.20	1.079	0.432	0.020	47000	56000	619/5
·	16	5.0	0.30	1.875	0.677	0.031	35000	42000	625
	19	6.0	0.30	2.838	1.078	0.049	35000	42000	635
6	15	5.0	0.20	1.470	0.599	0.027	42000	50000	619/6
_	19	6.0	0.30	2.838	1.078	0.049	35000	42000	626
7	19	6.0	0.30	2.838	1.078	0.049	35000	42000	607
	22	7.0	0.30	3.282	1.356	0.062	35000	42000	627
8	16	4.0	0.20	1.550	0.722	0.033	35000	42000	618/8TNH
	22	7.0	0.30	3.282	1.356	0.062	35000	42000	608
9	24	7.0	0.30	3.668	1.640	0.075	35000	42000	609
	26	8.0	0.30	4.557	1.955	0.089	35000	42000	629
10	26	8.0	0.30	4.557	1.955	0.089	28000	33000	6000
	30	9.0	0.60	6.047	2.510	0.114	25000	30000	6200
	30	14.0	0.60	6.047	2.510	0.114	25000	30000	62200
	35	11.0	0.60	8.072	3.430	0.156	22000	27000	6300
12	28	7.0	0.30	5.094	2.360	0.107	25000	30000	16001
	28	8.0	0.30	5.094	2.360	0.107	25000	30000	6001
	32	10.0	0.60	6.905	3.100	0.141	22000	27000	6201
	32	14.0	0.60	6.905	3.100	0.141	22000	27000	62201
	37	12.0	1.00	9.759	4.235	0.193	20000	24000	6301
15	32	8.0	0.30	5.594	2.860	0.130	21000	25000	16002
	32	9.0	0.30	5.594	2.865	0.130	21000	25000	6002
	35	11.0	0.60	7.718	3.745	0.170	20000	24000	6202
	35	14.0	0.60	7.718	3.745	0.170	20000	24000	62202
	42	13.0	1.00	11.310	5.330	0.242	18000	21000	6302
17	35	8.0	0.30	5.999	3.265	0.148	20000	24000	16003
	35		0.30	6.001	3.267	0.149	20000	24000	6003
	40	12.0	0.60	9.534	4.734	0.215	18000	21000	6203
		16.0	0.60	9.534	4.734	0.215	18000	21000	62203
	47	14.0	1.00	13.565	6.560	0.298	16000	19000	6303

Abuti	ment and Fil	let Dimensio	ns	Weight
d	d _a min	D _a max	r _a max	~
mm				kg
2	3.2	4.8	0.1	0.0004
3	4.2	8.5	0.1	0.0015
4	5.6	11.2	0.2	0.0032
	6.2	13.4	0.3	0.0050
5	6.6	11.5	0.2	0.0025
	7.0	14.0	0.3	0.0047
	7.2	15.8	0.3	0.0090
6	7.8	13.0	0.2	0.0040
	8.2	17.0	0.3	0.0080
7	9.0	17.2	0.3	0.0090
	9.2	19.0	0.3	0.0123
8	9.8	14.0	0.2	0.0030
	10.0	20.0	0.3	0.0150
9	11.0	22.0	0.3	0.0180
	11.0	24.0	0.3	0.0200
10	12.0	24.0	0.3	0.0190
	14.0	26.0	0.6	0.0310
	14.0	26.0	0.6	0.0400
	14.0	31.0	0.6	0.0540
12	14.0	26.0	0.3	0.0200
	14.0	26.0	0.3	0.0220
	16.0	28.0	0.6	0.0370
	16.0	28.0	0.6	0.0450
	17.0	32.0	1.0	0.0610
16	17.0	30.0	0.3	0.0270
	17.0	30.0	0.3	0.0300
	19.0	31.0	0.6	0.0460
	19.0	31.0	0.6	0.0540
	20.0	36.0	1.0	0.0850
17	19.0	33.0	0.3	0.0320
	19.0	33.0	0.3	0.0400
	21.0	36.0	0.6	0.0730
	21.0	36.0	0.6	0.0830
	23.0	41.0	1.0	0.1150

Single Row Deep Groove Ball Bearings d = 20 to 50 mm

Dim	nensions		Basic Load Dynamic	d Rating Static	Fatique load	Limiting Spe for Lubrication		Bearing Designation
d	D B	r _s	C,	C _{or}	limit	TOT EUDITOUTIO	JII ***IU!	Dooignation
		min		Oi .	P _u	Grease	Oil	
mm	1		kN		kN	min ⁻¹		
20	42 8.0	0.30	9.371	4.972	0.226	17000	20000	16004D
	42 12.0	0.60	9.371	4.972	0.226	17000	20000	6004
	47 14.0	1.00	12.774	6.553	0.298	15000	18000	6204
	47 18.0	1.00	12.774	6.553	0.298	15000	18000	62204
	47 20.6	1.00	12.774	6.553	0.298	15000	18000	63204
	52 15.0	1.10	15.866	7.811	0.355	14000	17000	6304
	52 21.0	1.10	15.866	7.811	0.355	14000	17000	62304
25	47 8.0	0.30	6.950	4.550	0.207	14000	17000	16005 16005D
	47 8.0	0.30	10.070	5.806	0.264	14000	17000	16005D
	47 12.0	0.60	10.070	5.806	0.264	14000	17000	6005
	52 15.0	1.00	14.029	7.940	0.361	12000	15000	6205
	52 18.0 62 17.0	1.00	14.029	7.940	0.361	12600	15000	62205
		1.10	21.123	10.806	0.491	11000	13000	6305
	62 24.0	1.10	21.123	10.806	0.491	11000	13000	62305
30	80 21.0 55 9.0	1.50	36.000	19.200	0.873	9400	11000	6405
30		0.30	11.200	7.360	0.335	12000	14000	16006
	55 13.0 62 16.0	1.00 1.00	13.243 19.443	8.250 11.186	0.375 0.508	12000 11000	14000 13000	6006 6206
	62 20.0	1.00	19.443	11.186	0.508	11000	13000	62206
	72 19.0	1.10	29.701	15.678	0.508	10000	12000	6306
	90 23.0	1.50	43.000	23.700	1.077	8400	10000	6406
35	62 9.0	0.30	9.960	7.362	0.335	10600	12600	16007
33	62 14.0	1.00	15.956	10.328	0.469	10600	12600	6007
	72 17.0	1.10	25.663	15.227	0.692	9400	11000	6207
	80 21.0	1.50	33.367	19.230	0.874	8400	10000	6307
	100 25.0	1.50	55.200	31.000	1.409	7500	8900	6407
40	68 9.0	0.30	12.667	9.617	0.437	9400	11000	16008
.0	68 15.0	1.00	16.824	11.493	0.522	9400	11000	6008
	80 18.0	1.10	32.633	19.887	0.904	8400	10000	6208
	90 23.0	1.50	40.760	24.170	1.099	7900	9400	6308
	110 27.0	2.00	63.100	36.200	1.645	6700	7900	6408
45	75 10.0	0.60	15.659	12.172	0.553	8400	10000	16009
	75 16.0	1.00	21.100	15.300	0.695	8400	10000	6009
	85 19.0	1.10	32.678	20.325	0.924	7900	9400	6209
	100 25.0	1.50	52.804	31.715	1.442	7100	8400	6309
	120 29.0	2.00	76.500	44.700	2.032	6000	7100	6409
50	80 10.0	0.60	16.092	13.147	0.598	7900	9400	16010
	80 16.0	1.00	21.720	16.650	0.757	7900	9400	6010
	90 20.0	1.10	35.066	23.226	1.056	7100	8400	6210
	110 27.0	2.00	61.754	37.754	1.716	6300	7500	6310
	130 31.0	2.10	87.400	52.100	2.368	5600	6700	6410

Abutr	ment and Fill	et Dimension	ns	Weight
d	d _a min	D _a max	r _a max	~
mm				kg
20	22.0	40.0	0.3	0.0500
	24.0	38.0	0.6	0.0700
	25.0	42.0	1.0	0.1080
	25.0	42.0	1.0	0.1300
	25.0	42.0	1.0	0.1460
	26.0	45.0	1.0	0.1450
	26.0	45.0	1.0	0.2000
25	27.0	43.0	0.3	0.0530
	27.0	43.0	0.3	0.0530
	28.0	43.0	0.6	0.0820
	30.0	47.0	1.0	0.1290
	30.0	47.0	1.0	0.1500
	31.0	55.0	1.0	0.2300
	31.0	55.0	1.0	0.3200
30	34.0 32.0	70.0 53.0	1.5 0.3	0.5300 0.0870
30	34.0	50.0	1.0	0.1190
	35.0	57.0	1.0	0.2000
	35.0	57.0	1.0	0.2400
	36.0	65.0	1.0	0.3310
	39.0	80.0	1.5	0.7250
35	37.0	60.0	0.3	0.1110
	39.5	57.0	1.0	0.1540
	42.0	65.0	1.0	0.2840
	42.0	71.0	1.5	0.4470
	44.0	90.0	1.5	0.9540
40	42.0	62.0	0.3	0.1250
	44.0	63.0	1.0	0.1910
	47.0	73.0	1.0	0.3490
	47.0	81.0	1.5	0.6250
	50.0	97.0	2.0	1.1230
45	49.0	71.0	1.0	0.1700
	49.0	70.0	1.0	0.2410
	52.0	78.0	1.0	0.4040
	52.0	91.0	1.5	0.8280
EC.	55.0	107.0	2.0	1.5400
50	54.0	76.0	0.6	0.1880
	54.0 57.0	75.0 83.0	1.0 1.0	0.2600 0.4600
	60.0	100.0	2.0	1.0600
	63.0	116.0	2.0	1.8900
	00.0	110.0	2.0	1.0000

Single Row Deep Groove Ball Bearings d = 55 to 90 mm

Dime	ensio	ns		Basic Load Dynamic	d Rating statická	Fatique load	Limiting Spe for Lubrication		Bearing Designation
d	D	В	r _s min	C _r	C _{or}	limit P _u	Grease	Oil	Designation
mm				kN		kN	min ⁻¹		
	90	18.0	1.10	28.216	21.318	0.969	7100	8400	6011
	100	21.0	1.50	43.350	29.397	1.336	6700	7900	6211
	120	29.0	2.00	71.000	44.700	2.032	5600	6700	6311
	140	33.0	2.10	100.000	61.900	2.814	5300	6300	6411
	95	18.0	1.10	29.343	23.256	1.057	6700	7900	6012
	110	22.0	1.50	52.846	35.786	1.627	6000	7100	6212
	130	31.0	2.10	81.500	52.100	2.368	5300	6300	6312
	150	35.0		110.000	69.400	3.079	4700	5600	6412
	100	11.0	0.60	21.200	19.600	0.891	6300	7500	16013
	100	18.0	1.10	30.500	25.100	1.141	6300	7500	6013
	120	23.0	1.50	57.210	40.011	1.819	5300	6300	6213
	140		2.10	92.600	59.600	2.676	5000	6000	6313
	160	37.0		117.950	78.329	3.357	4500	5300	6413
	110	13.0	0.60	27.600	25.100	1.141	5600	6700	16014
	110	20.0	1.10	37.960	30.959	1.407	5600	6700	6014
	125	24.0	1.50	62.000	43.800	1.991	5300	6300	6214
	150	35.0	2.10	104.000	63.100	2.735	4700	5600	6314
	180	42.0		144.000	104.000	4.228 1.209	4000	4700	6414 16015
	115	13.0	0.60	28.700	26.600	1.508	5300	6300	
	115	20.0	1.10 1.50	39.747	33.170		5300	6300	6015
	130 160	37.0	2.10	66.179 114.000	49.311 76.400	2.214 3.204	5000 4200	6000 5000	6215 6315
	190	45.0	3.00	152.525	112.922	3.204 4.459	3800	4500	6415
80 1		14.0	0.60	32.900	31.600	1.419	5000	6000	16016
	125	22.0	1.10	47.500	39.800	1.419	5000	6000	6016
									6216
	140 170	37.0	2.00	72.200 122.850	53.100 86.226	2.301 3.506	4700 4000	5600 4700	6316
	200	48.0	3.00	163.587	124.984	4.801	3500	4200	6416
	130	14.0	0.60	34.100	32.900	1.442	4700	5600	16017
	130	22.0	1.10	49.794	42.609	1.868	4700	5600	6017
	150	28.0	2.00	83.299	63.675	2.670	4200	5000	6217
	180	41.0	3.00	132.507	96.069	3.794	3800	4500	6317
	210	52.0	4.00	174.000	136.000	5.090	3300	4000	6417
	140	24.0	1.50	58.400	49.200	2.085	4500	5300	6018
	160	30.0	2.00	96.200	70.800	2.878	4000	4700	6218
	190	43.0	3.00	144.000	108.000	4.149	3500	4200	6318
	225	54.0	4.00	192.000	158.000	5.723	3200	3800	6418

Abu	Weight			
d	d _a min	D _a max	r _a max	~
mm				kg
55	60.0	84.0	1.0	0.3830
55	62.0	91.0	1.5	0.5970
	65.0	110.0	2.0	1.3800
	68.0	126.0	2.0	2.2900
60	65.0	88.0	1.0	0.4110
	67.0	101.0	1.5	0.7710
	72.0	118.0	2.0	1.7200
	73.0	136.0	2.0	2.7600
65	69.0	96.0	0.6	0.3000
	70.0	93.0	1.0	0.4370
	72.0	111.0	1.5	0.9970
	76.0	128.0	2.0	2.1000
	78.0	146.0	2.0	3.2800
70	74.0	106.0	0.6	0.4330
	75.0	103.0	1.0	0.6040
	77.0	116.0	1.5	1.0700
	81.0	138.0	2.0	2.5400
75	85.0	164.0	2.5	4.8500
75	79.0	111.0	0.6	0.4570
	80.0 82.0	108.0	1.0	0.6380
	82.0 86.0	122.0 148.0	1.5 2.0	1.1800
	90.0	174.0	2.0	3.0600 5.7400
80	84.0	121.0	0.6	0.5970
00	85.0	118.0	1.0	0.8450
	90.0	130.0	2.0	1.4000
	91.0	158.0	2.0	3.6300
	95.0	184.0	2.5	6.7200
85	89.0	126.0	0.6	0.6260
	90.0	123.0	1.0	0.8920
	95.0	140.0	2.0	1.8000
	98.0	166.0	2.5	4.2000
	105.0	190.0	3.0	7.8800
90	96.0	132.0	1.5	1.1700
	100.0	150.0	2.0	2.1600
	103.0	176.0	2.5	4.9500
	110.0	205.0	3.0	11.4000

Single Row Deep Groove Ball Bearings d = 95 to 170 mm

Dim	ensio	ns		Basic Load		Fatique	Limiting Speed		Bearing	
_	D	_	_	Dynamic	Static	load limit	for Lubrication w	rith	Designation	
d	U	В	r _s min	C _r	C _{or}		Grease	Oil		
			111111			P _u	Glease	Oii		
mm				kN		kN	min ⁻¹			
95	145	16,0	1,00	42,300	41,500	1,722	4200	5000	16019	
			1,50	60,700	54,100	2,245	4200	5000	6019	
		32,0		108,000	81,000	3,199	3800	4500	6219	
		45,0		152,444	117,366	4,393	3300	4000	6319	
100			1,00	44,000	43,800	1,781	4200	5000	16020	
			1,50	60,096	54,244	2,205	4200	5000	6020	
		34,0		123,000	92,600	3,557	3500	4200	6220	
		47,0		174,000	141,000	5,107	3200	3800	6320	
105		26,0		72,200	65,600	2,590	4000	4700	6021	
		36,0		132,927	104,833	3,924	3300	4000	6221	
		49,0		185,000	153,000	5,414	3000	3500	6321	
110	170		1,00	57,600	56,200	2.159	3800	4500	16022	
	170	28,0		82,500	72,200	2,774	3800	4500	6022	
		38,0		144,000	117,000	4,272	3200	3800	6222	
		50,0		203,000	180,000	6,185	2600	3200	6322	
120			1,00	61,000	63,100	2,342	3300	4000	16024	
		28,0		85,000	79,400	2,947	3300	4000	6024	
	215	40,0	2 10	144,000	117,000	4,109	3000	3500	6224	
130		24,0		65,503	67,193	2,453	3200	3800	61926	
		33,0		106,986	99.667	3,527	3200	3800	6026	
		40,0		153,000	133,000	4,506	2800	3300	6226	
140		33,0		110,000	108,000	3,711	3000	3500	6028	
		42,0		166,000	150,000	4,883	2500	3000	6228	
150		35,0		126,000	126,000	4,183	2700	3200	6030	
		45,0		190,000	181,000	5,677	2200	2700	6230	
170		42,0		168,000	171,000	5,301	2200	2700	6034	
		,-	_,	,	,	-,				

Abu	tment and Fill	et Dimensio	ns	Weight
d	d _a min	D _a max	r _a max	~
mm				kg
95	100,0	140,0	1,0	0,8900
	102,0	137,0	1,5	1,2200
	107,0	158,0	2,0	2,6000
	109,0	186,0	2,5	5,7200
100	105,0	145,0	1,0	0,9100
	106,0	142,0	1,5	1,2700
	112,0	169,0	2,0	3,1300
405	113,0	201,0	2,5	7,0700
105	113,0 117,0	151,0	2,0 2,0	1,5900 3,7400
	117,0	178,0 211,0	2,0 2,5	8,0000
110	115,0	165.0	1,0	1,4600
110	118,0	161,0	2,0	1,9500
	122,0	188,0	2,0	4,3700
	123,0	227,0	2,5	9,5800
120	125,0	175,0	1,0	1,8000
	128,0	171,0	2,0	2,1000
	132,0	203,0	2.0	5,1500
130	137,0	172,0	1,0	1,8600
	138,0	191,0	2,0	3,2600
	144,0	216,0	2,5	6,2000
140	148,0	200,0	2,0	3,3900
450	154,0	236,0	2,5	7,5600
150	159,0	213,0 256,0	2,0	4,1600 9,8500
170	164,0 179,0	248,0	2,5 2,0	6,9100
170	179,0	240,0	2,0	0,9100

Single Row Deep Groove Ball Bearings with Seals or Shields d = 3 to 25 $\,\mathrm{mm}$

Dime	ension	S		Basic L Rating	oad	Fatique load	Bearing De	esignation		
d	D	В	r _s	Dyn.	Static	limit				
_		_	min	C _r	C _{or}	Pu	Z, ZR	2Z, 2ZR	RS, RSR	2RS, 2RSR
mm				kN		kN				
3	10	4.0	0.15	0.645	0.229	0.01	623ZR	623-2ZR		
4	13	5.0	0.20	1.168	0.412	0.02	624ZR	624-2ZR		
5	16 16	5.0 5.0	0.30	1.875 1.875	0.677	0.03	634ZR 625ZR	634-2ZR 625-2ZR		
5	19	6.0	0.30	2.838	1.078	0.03	625ZR 635ZR	635-2ZR		
6	19	6.0	0.30	2.838	1.078	0.05	626ZR	626-2ZR		
7	19	6.0	0.30	2.838	1.078	0.05	607ZR	607-2ZR		
,	22	7.0	0.30	3.282	1.356	0.06	627ZR	627-2ZR		
8	22	7.0	0.30	3.282	1.356	0.06	608ZR	608-2ZR	608RSR	608-2RSR
9	24	7.0	0.30	3.668	1.640	0.07	609ZR	609-2ZR	609RSR	609-2RSR
ŭ	26	8.0	0.30	4.557	1.955	0.09	629ZR	629-2ZR	629RSR	629-2RSR
10	26	8.0	0.30	4.557	1.955	0.09	6000ZR	6000-2ZR	6000RSR	6000-2RSR
	30	9.0	0.60	6.047	2.510	0.11	6200ZR	6200-2ZR	6200RSR	6200-2RSR
	30	14.0	0.60	6.047	2.510	0.11	62200ZR	62200-2ZR	62200RSR	62200-2RSR
	35	11.0	0.60	8.072	3.430	0.16	6300ZR	6300-2ZR	6300RS	6300-2RS
12	28	8.0	0.30	5.094	2.360	0.11	6001ZR	6001-2ZR	6001RSR	6001-2RSR
	32	10.0	0.60	6.905	3.100	0.14	6201ZR	6201-2ZR	6201RSR	6201-2RSR
	32	14.0	0.60	6.905	3.100	0.14	62201ZR	62201-2ZR	62201RS	62201-2RS
	37	12.0	1.00	9.759	4.235	0.19	6301ZR	6301-2ZR	6301RS	6301-2RS
15	32	9.0	0.30	5.594	2.860	0.13	6002ZR	6002-2ZR	6002RS	6002-2RS
	35	11.0	0.60	7.718	3.745	0.17	6202Z	6202-2Z	6202RS	6202-2RS
	35	14.0	0.60	7.718	3.745	0.17	62202ZR	62202-2ZR	62202RS	62202-2RS
	42	13.0	1.00	11.310	5.335	0.24	6302ZR	6302-2ZR	6302RS	6302-2RS
17	35	10.0	0.30	5.999	3.265	0.15	6003ZR	6003-2ZR	6003RS	6003-2RS
	40	12.0	0.60	9.534	4.734	0.22	6203Z	6203-2Z	6203RS	6203-2RS
	40	16.0	0.60	9.534	4.734	0.22	62203Z	62203-2Z	62203RS	62203-2RS
	47	14.0	1.00	13.565	6.563	0.30	6303ZR	6303-2ZR	6303RS	6303-2RS
20	42	12.0	0.60	9.371	4.972	0.23	6004ZR	6004-2ZR	6004RS	6004-2RS
	47	14.0	1.00	12.774	6.553	0.30	6204Z	6204-2Z	6204RS	6204-2RS
	47	18.0 20.6	1.00	12.774	6.553	0.30	62204Z	62204-2Z	62204RS	62204-2RS
	47		1.00	12.774	6.553	0.30	63204Z	63204-2Z	63204RS	63204-2RS
	52 52	15.0 21.0	1.10 1.10	15.866 15.866	7.811 7.811	0.36 0.36	6304Z 62304Z	6304-2Z 62304-2Z	6304RS 62304RS	6304-2RS 62304-2RS
25	47	12.0	0.60	10.070	5.806	0.36	6005ZR	6005-ZR	6005RS	6005-2RS
25	52	15.0	1.00	14.029	7.940	0.26	6205Z	6205-2K	6205RS	6205-2RS
	52	18.0	1.00	14.029	7.940	0.36	62205Z	62205-2Z	62205RS	62205-2RS
	62	17.0	1.10	21.123	10.806	0.30	6305Z	6305-2Z	6305RS	6305-2RS
	62	24.0	1.10	21.123	10.806	0.49	62305Z	62305-2Z	62305RS	62305-2RS
	UL.	24.0	1.10	21.120	10.000	5.45	020002	52005 ZZ	02000110	02000 Z110

Limiting (Abutme	ent and Fille	t Dimensions			Weight	
or Lubric Grease	ation with	Oil	d	لم ا	al	<u></u>			
Z, 2Z	RS, 2RS	Z	min	d _a max	d _ы max	D _a max	r _a	~	
min ⁻¹			mm					kg	
40000		50000	3	4.2	4.8	8.5	0.1	0.0020	
38000		45000	4	5.5	5.8	11.2	0.2	0.0040	
35000		42000		6.2	6.5	13.4	0.3	0.0050	
35000		42000	5	7.0	7.0	14.0	0.3	0.0060	
35000		42000		7.2	7.5	15.8	0.3	0.0090	
35000		42000	6	8.2	8.3	17.0	0.3	0.0100	
35000		42000	7	9.0	9.0	17.0	0.3	0.0100	
35000		42000		9.2	9.8	19.5	0.3	0.0120	
35000	24000	42000	8	10.0	10.0	20.0	0.3	0.0150	
35000	24000	42000	9	11.0	12.0	22.0	0.3	0.0180	
35000	24000	42000		12.0	12.5	22.5	0.3	0.0200	
28000	19000	33000	10	12.0	12.5	24.0	0.3	0.0200	
25000	17000	30000		14.0	14.4	26.0	0.6	0.0320	
25000	17000	30000		14.0	14.4	26.0	0.6	0.0400	
22000	15000	27000		14.0	15.0	31.0	0.6	0.0530	
25000	17000	30000	12	14.0	14.5	26.0	0.3	0.0220	
22000	15000	27000		16.0	16.5	28.0	0.6	0.0370	
22000	15000	27000		16.0	16.5	28.0	0.6	0.0450	
20000	13000	24000		17.0	17.0	32.0	1.0	0.0600	
21000	14000	25000	15	17.0	18.0	30.0	0.3	0.0310	
20000	13000	24000		19.0	19.5	31.0	0.6	0.0450	
20000	13000	24000		19.0	19.5	31.0	0.6	0.0540	
18000	12000	21000		20.0	20.5	36.0	1.0	0.0820	
20000	13000	24000	17	19.0	20.0	33.0	0.3	0.0400	
18000	12000	21000		21.0	21.4	36.0	0.6	0.0650	
18000	12000	21000		21.0	21.4	36.0	0.6	0.0830	
16000	10600	19000		23.0	23.0	41.0	1.0	0.1160	
17000	11000	20000	20	24.0	24.5	38.0	0.3	0.0700	
15000	10000	18000		25.0	25.5	42.0	0.6	0.1070	
15000	10000	18000		25.0	25.5	42.0	0.6	0.1300	
15000	10000	18000		25.0	25.5	42.0	0.6	0.1540	
14000	9400	17000		26.0	26.6	45.0	1.0	0.1340	
14000	9400	17000		26.0	26.6	45.0	1.0	0.2000	
14000	9400	17000	25	28.0	29.0	43.0	0.6	0.0810	
12600	8400	15000	20	30.0	30.5	47.0	1.0	0.1280	
12600	8400	15000		30.0	30.5	47.0	1.0	0.1200	
11000	7500	13000		31.0	33.0	55.0	1.0	0.2320	
11000	7500	13000		31.0	33.0	55.0	1.0	0.2320	
11000	7300	13000		31.0	33.0	55.0	1.0	0.3200	

Single Row Deep Groove Ball Bearings with Seals or Shields d = 30 to 100 mm

Dime	ensions	3		Basic Lo	oad	Fatique load	Bearing D	esignation		
d	D	В	r _s min	Dyn. C _r	Static C _{or}	limit P _u	Z, ZR	2Z, 2ZR	RS, RSR	2RS, 2RSR
mm				kN		kN				
		40	4.00	10.010	0.050	0.00				
30	55	13	1.00	13.243	8.253	0.38	6006Z	6006-2Z	6006RS	6006-2RS
	62	16	1.00	19.443	11.186	0.51	6206Z	6206-2Z	6206RS	6206-2RS
	62 72	20 19	1.00	19.443 29.701	11.186	0.51 0.71	62206Z 6306Z	62206-2Z 6306-2Z	62206RS 6306RS	62206-2RS 6306-2RS
35	62	14	1.10	15.956	15.678 10.328	0.77	6007Z	6007-2Z	6007RS	6007-2RS
33	72	17	1.10	25.663	15.227	0.47	6207Z	6207-2Z	6207RS	6207-2RS
	80	21	1.50	33.367	19.230	0.87	6307Z	6307-2Z	6307RS	6307-2RS
40	68	15	1.00	16.824	11.493	0.52	6008Z	6008-2Z	6008RS	6008-2RS
40	80	18	1.10	32.633	19.887	0.90	6208Z	6208-2Z	6208RS	6208-2RS
	90	23	1.50	40.760	24.017	1.09	6308Z	6308-2Z	6308RS	6308-2RS
45	75	16	1.00	21.100	15.300	0.70	6009Z	6009-2Z	6009RS	6009-2RS
.0	85	19	1.10	32.687	20.323	0.92	6209Z	6209-2Z	6209RS	6209-2RS
	100	25	1.50		31.715	1.44	6309Z	6309-2Z	6309RS	6309-2RS
50	80	16	1.00	21,720	16.650	0.76	6010Z	6010-2Z	6010RS	6010-2RS
	90	20	1.10	35.066	23.266	1.06	6210Z	6210-2Z	6210RS	6210-2RS
	110	27	2.00	61.754	37.745	1.72	6310Z	6310-2Z	6310RS	6310-2RS
55	90	18	1.10	28.216	21.318	0.97	6011Z	6011-2Z	6011RS	6011-2RS
	100	21	1.50	43.350	29.397	1.34	6211Z	6211-2Z	6211RS	6211-2RS
	120	29	2.00	71.000	44.700	2.03	6311Z	6311-2Z	6311RS	6311-2RS
60	95	18	1.10	29.343	23.256	1.06	6012Z	6012-2Z	6012RS	6012-2RS
	110	22	1.50	52.486	35.786	1.63	6212Z	6212-2Z	6212RS	6212-2RS
	130	31	2.10		52.100	2.37	6312Z	6312-2Z	6312RS	6312-2RS
65	100	18	1.10		25.100	1.14	6013Z	6013-2Z	6013RS	6013-2RS
	120	23	1.50	57.210	40.011	1.82	6213Z	6213-2Z	6213RS	6213-2RS
	140	33	2.10		59.600	2.68	6313Z	6313-2Z	6313RS	6313-2RS
70	110	20	1.10	37.960	30.959	1.41	6014Z	6014-2Z	6014RS	6014-2RS
	125	24	1.50		43.800	1.99	6214Z	6214-2Z	6214RS	6214-2RS
	150	35	2.10		68.100	2.95	6314Z	6314-2Z	6314RS	6314-2RS
75	115	20	1.10	39.747	33.170	1.51	6015Z	6015-2Z	6015RS	6015-2RS
	130	25	1.50	66.179	49.311	2.21	6215Z	6215-2Z	6215RS	6215-2RS
	160	37	2.10	114.000	76.400	3.20	6315Z	6315-2Z	6315RS	6315-2RS
80	125	22	1.10	47.500	39.800	1.79	6016Z	6016-2Z	6016RS	6016-2RS
	140	26	2.00	72.200	53.100	2.30	6216Z	6216-2Z	6216RS	6216-2RS
	170	39	2.10	122.850	86.226	3.51	6316Z	6316-2Z		
85	130	22	1.10	49.794	42.609	1.87	6017Z	6017-2Z	C047D0	CO47 ODO
	150	28	2.00		63.675	2.67	6217Z	6217-2Z	6217RS	6217-2RS
00	180	41	3.00	132.507		3.79	6317Z	6317-2Z		
90	160	30 43	2.00	96.200	70.800	2.88	6218Z	6218-2Z		
100	190 150	24	3.00	143.000		4.00	6318Z	6318-2Z		
100	150	24	1.50	60.000	54.000	2.20	6020Z	6020-2Z		

Limiting	Speed cation with		Abutme	Abutment and Fillet Dimensions						
for Lubric	cation with	Oil	d	۵	۵	D				
Z. 2Z	RS, 2RS	Z	min	d _a max	d _⊳ max	D _a max	r _a	~		
<u>, 22</u>	no, 2no	۷	111111	IIIax	IIIdX	IIIdX				
nin ⁻¹			mm					kg		
12000	7900	14000	30	34.0	35.0	50.0	1.0	0.1190		
11000	7500	13000		35.0	36.7	57.0	1.0	0.2010		
11000	7500	13000		35.0	36.7	57.0	1.0	0.2400		
0000	6700	12000		36.0	38.9	65.0	1.0	0.3500		
0600	7100	12600	35	39.5	39.5	57.0	1.0	0.1590		
9400	6300	11000		42.0	42.0	65.0	1.0	0.2900		
8400	5600	10000		42.0	44.0	71.0	1.5	0.4600		
9400	6300	11000	40	44.0	46.0	63.0	1.0	0.1950		
8400	5600	10000		47.0	48.0	73.0	1.0	0.3670		
7900	5300	9400		47.0	50.6	81.0	1.5	0.6350		
8400	5600	10000	45	49.0	51.5	70.0	1.0	0.2490		
7900	5300	9400		52.0	52.5	78.0	1.0	0.4100		
7100	4700	8400		52.0	56.0	91.0	1.5	0.8330		
7900	5300	9400	50	54.0	56.5	75.0	1.0	0.2640		
7100	4700	8400		57.0	58.0	83.0	1.0	0.4640		
6300	4200	7500		60.0	61.8	100.0	2.0	1.0800		
7100	4700	8400	55	60.0	62.5	84.0	1.0	0.3900		
6700	4500	7900		62.0	65.0	91.0	1.5	0.6100		
5600	3800	6700		65.0	67.0	110.0	2.0	1.3800		
6700	4500	7900	60	65.0	68.0	88.0	1.0	0.4200		
6000	4000	7100	00	67.0	70.2	101.0	1.5	0.7870		
5300	3500	6300		72.0	75.0	118.0	2.0	1.7200		
6300	4200	7500	65	70.0	73.0	93.0	1.0	0.4400		
5300	3500	6300	00	72.0	77.0	111.0	1.5	0.9950		
5000	3300	6000		76.0	78.0	128.0	2.0	2.1000		
5600	3800	6700	70	75.0	78.0	103.0	1.0	0.6180		
5300	3500	6300	70	77.0	82.0	116.0	1.5	1.0900		
4700	3200	5600		81.0	85.0	138.0	2.0	2.5300		
5300	3500	6300	75	80.0	83.0	108.0	1.0	0.6400		
5000	3300	6000	73	82.0	85.0	121.0	1.5	1.1900		
4200	2800	5000		86.0	93.0	148.0	2.0	3.0300		
5000	3300	6000	80	85.0	90.0	118.0	1.0	0.8600		
4700	3200	5600	00	90.0	92.0	130.0	2.0	1.4100		
4000	3200	4700		91.0	99.0	158.0	2.0	3.6200		
4700		5600	85	90.0	95.0	123.0	1.0	0.8900		
4200	2800	5000	00	95.0	99.0	140.0	2.0	1.7900		
3800	2000	4500		98.0	103.0	166.0	2.5	4.2600		
4000		4700	90	100.0	105.0	150.0	2.0	2.1600		
		4200	90							
3400 4200		5000	100	103.0 106.0	108.0 110.0	176.0 142.0	2.5 1.5	5.1500 1.2700		
4200		5000	100	100.0	110.0	142.0	1.5	1.2/00		

Single Row Deep Groove Ball Bearings with Snap Ring Groove on Outer Ring d = 12 to 50 mm

Dim	ensior	าร						Basic Load		Fatique	Limiting S	
-1	_	_	_	_			_	Dynamic	Static	load	for Lubrica	ation with
d	D	В	r _s	D ₁	a	b	r _o	C _r	C _{or}	limit	0	O:I
			min	max	max	min	max			P_u	Grease	Oil
mm								kN		kN	min ⁻¹	
12	32	10	0.66	30.15	2.06	1.35	0.4	6.905	3.100	0.141	22000	27000
	32	14	0.66	30.15	2.06	1.35	0.4	6.905	3.100	0.141	22000	27000
15	35	11	0.60	33.17	2.06	1.35	0.4	7.718	3.745	0.170	20000	24000
	35	14	0.60	33.17	2.06	1.35	0.4	7.718	3.745	0.170	20000	24000
17	40	12	0.60	38.10	2.06	1.35	0.4	9.534	4.734	0.215	18000	21000
	40	16	0.60	38.10	2.06	1.35	0.4	9.534	4.734	0.215	18000	21000
	47	14	1.00	44.60	2.46	1.35	0.4	13.565	6.563	0.298	16000	19000
20	42	12	0.60	39.75	2.06	1.35	0.4	9.371	4.972	0.226	17000	20000
	47	14	1.00	44.60		1.35	0.4	12.774	6.553	0.298	15000	18000
	52	15	1.10	49.73	2.46	1.35	0.4	15.866	7.811	0.355	14000	17000
	52	21	1.10	49.73	2.46	1.35	0.4	15.866	7.811	0.355	14000	17000
25	47	12	0.60	44.60	2.06	1.35	0.4	10.070	5.806	0.264	14000	17000
	52	15	1.00	49.73	2.46	1.35	0.4	14.029	7.940	0.361	12600	15000
	52	18	1.00	49.73	2.46	1.35	0.4	14.029	7.940	0.361	12600	15000
	62	17	1.10	59.61	3.28	1.90	0.6	21.123	10.806	0.491	11000	13000
	62	24	1.10	59.61	3.28	1.90	0.6	21.123	10.806	0.491	11000	13000
	80	21	1.50	76.81	3.28	1.90	0.6	36.000	19.200	0.873	9400	11000
30	55	13	1.00	52.60	2.08	1.90	0.4	13.243	8.253	0.375	12000	14000
	62	16	2.00	59.61	3.28	1.90	0.6	19.443	11.186	0.508	11000	13000
	62	20	2.00	59.61	3.28	1.90	0.6	19.443	11.186	0.508	11000	13000
	72	19	1.10	68.81	3.28	1.90	0.6	29.701	15.678	0.713	10000	12000
	90	23	1.50	86.79	3.28	2.70	0.6	43.000	23.700	1.077	8400	10000
35	62	14	1.00	59.61	2.06	1.90	0.6	15.956	10.328	0.469	10600	12600
	72	17	1.10	68.81	3.28	1.90	0.6	25.663	15.277	0.694	9400	11000
	80	21	1.50	78.81	3.28	1.90	0.6	33.367	19.230	0.874	8400	10000
	100	25	1.50	96.80		2.70	0.6	55.200	31.000	1.409	7500	8900
40	68	15	1.00	64.82	2.49	1.90	0.6	16.824	11.493	0.522	9400	11000
	80	18	1.10	76.81	3.28	1.90	0.6	32.633	19.887	0.904	8400	10000
	90	23	1.50	86.79	3.28	2.70	0.6	40.760	24.017	1.092	7900	9400
	110	27	2.00	106.81	3.28	2.70	0.6	63.100	36.200	1.645	6700	7900
45	75	16	1.00	71.83	2.49	1.90	0.6	21.100	15.300	0.695	8400	10000
	85	19	1.10	81.81	3.28	1.90	0.6	32.687	20.325	0.924	7900	9400
	100	25	1.50	96.80	3.28	2.70	0.6	52.804	31.715	1.442	7100	8400
	120	29	2.00	115.21	4.06	3.10	0.6	76.500	44.700	2.032	6000	7100
50	80	16	1.00	76.81	2.49	1.90	0.6	21.720	16.650	0.757	7900	9400
	90	20	1.10	86.79	3.28	2.70	0.6	35.066	23.226	1.056	7100	8400
	110	27	2.00	106.81	3.28	2.70	0.6	61.900	37.600	1.709	6300	7500

-	d min mm	d _a min	D _a max	D _b min	b _a min	r _a		snap ring
-	mm	min	max	min		'a	~	
-					min	max		
5201N 52201N	10						kg	
-		40.0		00.0				Doo
52201N	12	16.0	28.0	39.0	1.4	0.6	0.04	R32
	45	16.0	28.0	39.0	1.4	0.6	0.05	R32
202N	15	19.0	31.0	41.0	1.4	0.6	0.03	R35
52202N 5203N	17	19.0 21.0	31.0 36.0	41.0 46.0	1.4	0.6	0.05	R35 R40
	17							
52203N		21.0	36.0	46.0	1.5	0.6	0.08	R40
303N	00	23.0	41.0	54.0	1.5	1.0	0.12	R47
6004N	20	24.0	38.0	47.5	1.5	0.6	0.07	R42
204N		25.0	42.0	54.0	1.5 1.5	1.0	0.11	R47 R52
304N		26.0	45.0	59.0		1.0	0.15	
2304N	OF	26.0	45.0	59.0	1.5	1.0	0.20	R52
005N	25	28.0	43.0	54.0	1.5	0.6	0.08	R47 R52
205N		30.0	47.0	59.0	1.5	1.0	0.13	
32205N		30.0	47.0	59.0	1.5	1.0	0.15	R52
305N		31.0	55.0	69.0	2.2	1.0	0.23	R62
2305N		31.0	55.0	69.0	2.2	1.0	0.32	R62
6405N	00	34.0	70.0	88.0	2.2	1.5	0.53	R80
006N	30	34.0	50.0	62.0	1.5	1.0	0.12	R55
206N		35.0	57.0	69.0	2.2	1.0	0.20	R62
52206N		35.0	57.0	69.0	2.2	1.0	0.24	R62
306N		36.0	65.0	80.0	2.2	1.0	0.33	R72
3406N	0.5	39.0	80.0	98.0	3.0 2.2	1.5 1.0	0.73	R90
007N	35	39.5	57.0	69.0			0.15	R62
207N		42.0	65.0	80.0	2.2 2.2	1.0	0.28	R72
307N		42.0	71.0	88.0		1.5	0.45	R80
6407N	40	44.0	90.0	108.0	3.0	1.5	0.95	R100
N8008	40	44.0	63.0	76.0	2.2	1.0	0.19	R68
208N		47.0	73.0	88.0	2.2	1.0	0.35	R80
308N		47.0	81.0	98.0	3.0	1.5	0.63	R90
3408N	45	50.0	97.0	118.0	3.0	3.0	1.23	R110
009N	45	49.0	70.0	83.0	2.2	1.0	0.24	R75
209N		52.0	78.0	93.0	2.2	1.0	0.40	R85
309N		52.0	91.0	108.0	3.0	1.5	0.83	R100
6409N	FO	55.0	107.0	131.0	3.5	2.0	1.54	R120
010N	50	54.0	75.0	88.0	2.2	1.0	0.26	R80
210N		57.0	83.0	98.0	3.0	1.0	0.46	R90
310N		60.0	100.0	118.0	3.0	2.0	1.06	R110

Single Row Deep Groove Ball Bearings with Snap Ring Groove on Outer Ring d = 55 to 120 mm

Dim	ension	ıs						Basic Load Dynamic	d Rating Static	Fatique load	Limiting S	
d	D	В	r _s min	D ₁ max	a max	b min	r _o max	C _r	C _{or}	limit P _u	Grease	Oil
mm								kN		kN	min ⁻¹	
55	90	18	1.10	86.79	2.87	2.70	0.6	28.200	21.318	0.969	7100	8400
	100	21	1.50	96.80		2.70	0.6	43.350	29.397	1.336	6700	7900
	120	29	2.00	115.21		3.10	0.6	71.000	44.700	2.032	5600	6700
	140	33	2.10	135.23		3.10	0.6	100.000	61.900	2.814	5300	6300
60	95	18	1.10	91.82	2.87	2.70	0.6	29.343	23.256	1.057	6700	7900
	110	22	1.50	106.81	3.82	2.70	0.6	52.486	35.786	1.627	6000	7100
	130	31	2.10	125.22		3.10	0.6	81.500	52.100	2.368	5300	6300
	150	35	2.10	145.24		3.10	0.6	110.000	69.400	3.079	4700	5600
65	100	18	1.10	96.80		2.70	0.6	30.500	25.100	1.141	6300	7500
	120	23	1.50	115.21		3.10	0.6	57.210	40.011	1.819	5300	6300
	140	33	2.10	135.23		3.10	0.6	92.600	59.600	2.676	5000	6000
	160	37	2.10	155.22		3.10	0.6	117.950	78.329	3.357	4500	5300
70	110	20	1.10	106.81		2.70	0.6	37.960	30.959	1.407	5600	6700
	125	24	1.50	120.22		3.10	0.6	62.000	43.800	1.991	5300	6300
	150	35	2.10	145.24		3.10	0.6	104.000	68.100	2.951	4700	5600
	180	42	3.00	173.66		3.50	0.6	114.000	104.000	4.228	4000	4700
75	115	20	1.10	111.81		2.70	0.6	39.747	33.170	1.508	5300	6300
	130	25	1.50	125.22		3.10	0.6	66.170	49.311	2.214	5000	6000
	160	37	2.10	155.22		3.10	0.6	114.000	76.400	3.204	4200	5000
80	190 125	45 22	3.00	183.64		3.50	0.6	152.529 47.500	112.922 39.800	4.459 1.787	3800 5000	4500 6000
80	140	26	2.00	135.23		3.10	0.6	72.200	53.100	2.301	4700	5600
	170	39	2.10	163.65		3.50	0.6	122.850	86.226	3.506	4000	4700
	200	48	3.00	193.65		3.50	0.6	163.587	124.984	4.801	3500	4200
85	130	22	1.10	125.22		3.10	0.6	49.794	42.609	1.868	4700	5600
00	150	28	2.00	145.24		3.10	0.6	83.299	63.675	2.670	4200	5000
	180	41	3.00	173.66		3.50	0.6	132.507	96.069	3.794	3800	4500
90	140	24	1.50	135.23		3.10	0.6	58.400	49.200	2.085	4500	5300
	160	30	2.00	155.22		3.10	0.6	96.200	70.800	2.878	4000	4700
95	200	45	3.00	193.65		3.50	0.6	152.444	117.366	4.393	3300	4000
100	150	24	1.50	145.24		3.10	0.6	60.096	54.244	2.205	4200	5000
105	190	36	2.10	183.64		3.50	0.6	132.297	104.833	3.924	3300	4000
120	180	28	2.00	173.66	3.71	3.50	0.6	85.000	79.400	2.947	3300	4000

Bearing Designation	Abutme	ent and Fille	et Dimensio	ons			Weight	Respective snap ring
J	d min	d _a min	D _a max	D _b min	b _a min	r _a max	~	
	mm						kg	
6011N	55	60.0	84.0	98.0	3.0	1.0	0.38	R90
6211N		62.0	91.0	108.0	3.0	1.5	0.60	R100
311N		65.0	110.0	131.0	3.5	2.0	1.38	R120
6411N		68.0	126.0	151.0	3.5	2.0	2.29	R140
6012N	60	65.0	88.0	103.0	3.0	1.0	0.41	R95
6212N		67.0	101.0	110.0	3.0	1.5	0.77	R110
6312N		72.0	118.0	141.0	3.5	2.0	1.72	R130
6412N		73.0	136.0	162.0	3.5	2.0	2.76	R150
6013N	65	70.0	93.0	108.0	3.0	1.0	0.44	R100
6213N		72.0	111.0	131.0	3.5	1.5	1.00	R120
6313N		76.0	128.0	148.0	3.5	2.0	2.10	R140
6413N		78.0	146.0	172.0	3.5	2.0	3.28	R160
6014N	70	75.0	103.0	118.0	3.0	1.0	0.60	R110
6214N		77.0	116.0	136.0	3.5	1.5	1.07	R125
6314N		81.0	138.0	162.0	3.5	2.0	2.54	R150
6414N		85.0	164.0	195.0	4.5	2.5	4.85	R180
6015N	75	80.0	108.0	123.0	3.0	1.0	0.64	R115
6215N		82.0	121.0	141.0	3.5	1.5	1.18	R130
6315N		86.0	148.0	172.0	3.5	2.0	3.06	R160
6415N		90.0	174.0	205.0	4.5	2.5	5.74	R190
6016N	80	85.0	118.0	136.0	3.5	1.0	0.85	R125
6216N		90.0	130.0	151.0	3.5	2.0	1.40	R140
6316N		91.0	158.0	185.0	3.5	2.0	3.63	R170
6416N		95.0	184.0	215.0	4.5	2.5	6.72	R200
6017N	85	91.5	123.5	141.0	3.5	1.0	0.89	R130
6217N		95.0	140.0	162.0	3.5	2.0	1.80	R150
6317N		98.0	166.0	195.0	4.5	2.5	4.20	R180
6018N	90	96.0	132.0	151.0	3.5	1.5	1.17	R140
6218N		100.0	150.0	172.0	3.5	2.0	2.16	R160
6319N	95	109.0	186.0	215.0	4.5	2.5	5.72	R200
6020N	100	106.0	142.0	162.0	3.5	1.5	1.27	R150
6221N	105	117.0	178.0	205.0	4.5	2.0	3.74	R190
6024N	120	188.0	171.0	195.0	4.5	2.0	2.10	R180

Separable Single Row Ball Bearings d = 10 to 20 mm

Dim	ensions	S			Basic Load	Rating Static	Fatique	Limiting Speed for Lubrication with	Bearing
d	D	В	r _s min	r _{1S} min	Dynamic C _r	Static C _{or}	load limit P _u	Grease Oil	Designation
mm					kN		kN	min ⁻¹	
10 12	28 32	8	0.3	0.15 0.15	6.45 6.36	2.91 3.37	0.13 0.15	25000 31000 22000 28000	E10Y E12TNG
15	35 35	8	0.3 0.3	0.15 0.15	8.40 8.40	4.58 4.58	0.21 0.21	20000 24000 20000 24000	E15 E15Y
17	44 44	11 11	0.6 0.6	0.30 0.30	10.71 14.72	6.08 8.07	0.28 0.37	16000 19000 14000 17000	B017
20	47	12	1.0	0.60	15.88	9.15	0.42	14000 17000	E20

Abu	tment and Fil	let Dimensio	ns	Weight
d	d _a min	D _a max	r _a max	
mm				kg
10	12.0 14.0	25.5 29.0	0.3 0.3	0.02 0.03
15	17.2 17.2	31.8 31.8 39.0	0.3 0.3 0.6	0.03
17	22.0 22.0	39.0	0.6	0.03 0.08 0.08
20	26.0	42.0	1.0	0.09

Single Row Angular Contact Ball Bearings

Raceways of single row angular contact ball bearings are designed in such a way that the connecting line of their contact points with the balls creates with the perpendicular line to the bearing axis an acute angle, so called contact angle and are non-separable. Bearings in B and BE design have contact angle $\alpha = 40^\circ$. This design allows the bearings to accommodate radial loads, acting simultaneously with a relative great axial load in one direction. For axial load accommodation in both directions, the bearings are arranged in pairs against each other.

In the production programme there are bearings in AA design where the contact angle is α =26°, in A design the contact angle is α = 25°.

Single row angular contact bearings - type A70 and A72 or B70 and B72 are determined for high rotational speeds. They differ from standard bearings of this type by internal design, bearing ring design, contact angle

size, cage design and high tolerance class. Bearings are non-separable.

Bearings with CB designation have contact angle $\alpha=10^\circ$. They are usually produced in tolerance class P4, P4A and are determined for very precision arrangements with high rotational speed, e.g. grinding electric spindles and appliances.

Bearings with designation CA have contact angle $\alpha = 12^{\circ}$.

Bearings in C design have contact angle α = 15°, they are produced in tolerance classes P5, P5A and P4, P4A and are predominately used for machine tool spindle arrangements and similar devices.

Bearings in AA design are produced in tolerance classes P5 and P4 and are determined for machine tool spindle arrangement and similar devices with relatively higher axial load.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design is a part of the data in the dimension tables. Difference from standard design is designated by additional symbols (section 2.2).

Cage

Bearings - type 72 and 73 in B and AA design have a sheet cage which is not indicated. Bearings - type 72 and 73 in BE design have a solid cage made of polyamide strengthened by glass fibres (TNG).

Bearings - type A70 and A72 determined for high rotational speeds have a solid cage made of textite, centered on outer ring (TA) and bearings - type B70 and B72 have a solid textite cage centered on inner ring (TB), besides the bearing B7014AA which has a solid brass cage centered on inner ring (MB).

Tolerance

Single row angular contact ball bearings - Type 72 and 73 are commonly produced in normal tolerance class PO which is not indicated. For more demanding arrangements bearings in tolerance class P6 are delivered.

Bearings - type A70, A72, B70 and B72 in CA, C and A design are produced and delivered in tolerance classes P5. P5A and P4. P4A.

Bearings - type A72 and B72 in CB design are produced only in tolerance class P4, P4A. Deliveries of bearings in higher tolerance classes should be discussed with the supplier in advance.

Limiting deviation values of dimension and running accuracy comply with the standards ISO 199 and ISO 492 and are shown in tables 10 to 13.

Internal Clearance

Usual utilization of single row ball bearings is in pairs. Suitable operating clearance or preload is adjusted at mounting and depends on arrangement design and operating conditions.

Bearing Arrangement in Pairs

Bearings in A70, A72, B70 and B72 design are determined for high rotational speeds and are delivered in pairs.

Pair in "O" Arrangement (back to back)

This pair is significant by its high rigidity against tilting and carries axial forces in both directions always only by one bearing. It is used for accommodation of tilting moments.

Arrangement scheme - see section 2.2.

Pair in "X" Arrangement (face to face)

From the point of view of carrying axial forces this pair has the same properties as pair "O", but it has smaller rigidity for accommodating the tilting moment.

Arrangement scheme - see section 2.2.

Pair in "T" Arrangement (tandem)

This pair is significant by its rigidity against tilting, but it is capable of carrying the axial load in one direction only.

Arrangement scheme - see section 2.2.

The matched bearing pair is delivered in a common package to prevent interchange. Position of the greatest runout is marked by a line on ring faces. Mutual ring position is designated by converging lines in "V" shape on the outer cylindrical surface of the matched pair. Bearings are mounted in the arrangemet so that the lines indicating the place of the greatest runout can lie on a line parallel to the shaft axis.

Matched pairs "X" and "O" are delivered with small (L), medium (M) and heavy (S) preload. Designation example of such a pair - B7204CBTB P40L or A7201AATA P5XM.

Axial preload is determined from relation :

$$F_{D} = k C_{r} \cdot 10^{-2}$$
 [kN]

F_n - axial preload [kN]

C_r - radial basic dynamic load [kN]

k - axial preload factor according to the table

Axial Preload		Factor k Contact Angle α 10°	12°	15°	26°
Magnitude	Designation	Bearing Design CB	CA	C	AA
Small	L	0.4	0.5	0.7	1.2
Medium	M	1.4	1.6	2.0	3.5
Heavy	S	2.8	3.2	4.0	7.0

Radial basic dynamic load rating of matched pair C_{rs} is :

$$C_{rs} = 1.62 \cdot C_{r}$$
 [kN]

Radial basic static load rating of matched pair C_{nrs} is:

Values C_r and C_{nr} are shown in the dimension tables of this publication.

Limiting rotational speed for matched pair is smaller than for individual bearing (shown in dimension tables):

- pair with small preload (L) of 20%

Bearings Matching in Sets of Three and Four Bearings

For special accurate arrangement requiring high accuracy, rigidity, load rating and high rotational speed bearings - type A70, A72, B70 and B72 matched in sets of three or four bearings are delivered. Scheme of this arrangement - see section 2.2.

Universal Bearing Matching

Single row angular contact ball bearings B70. .CTA in universal design (U) are determined for matching in pairs, in "X", "0" or "T" arrangements, or for matching in sets of three or four bearings. They are manufactured with a light preload (UL) by "X" and "0" matching.

Bearing deliveries in universal design should be discussed with the supplier in advance.

Misalignment

Single row angular contact ball bearings mounted in pairs are sensitive to mutual bearing ring misalignment.

Tolerance of the arrangement surfaces for bearings in tolerance class P5 and P4 are :

Tolerance Class	Shaft Inner Ring Load Circumferential		Housing Bore Outer Ring Load Point Locating Bearing	Non-Locating Bearing	Circumferential
P5	js5	h5	JS5	H5	M5
P4	js4	h4	JS5	H5	M5

Radial Equivalent Dynamic Load

Bearings with contact angle α = 40°, B and BE design :

Single bearings:

$$P_r = F_r$$
 for $F_a/F_r \le 1.14$ [kN]
 $P_r = 0.35F_r + 0.57F_a$ for $F_a/F_r > 1.14$ [kN]

Bearings with contact angle $\alpha = 26^{\circ}$, AA design

Bearings with contact angle $\alpha = 25^{\circ}$, A design

Single bearings and matched pairs, "T" arrangement:

$$P_r = F_r$$
 for $F_a/F_r \le 0.68$ [kN] $P_r = 0.41F_r + 0.87F_a$ for $F_a/F_r > 0.68$ [kN]

Matched pairs, "O" and "X" arrangement :

$$P_r = F_r + 0.92F_a$$
 for $F_a/F_r \le 0.68$ [kN] $P_r = 0.67F_r + 1.14F_a$ for $F_a/F_r > 0.68$ [kN]

Bearings with contact angle $\alpha = 15^{\circ}$, C design :

Single bearings and matched pairs, "T" arrangement:

$$P_r = F_r$$
 for $F_a/F_r \le e$ [kN]
 $P_r = 0.44F_r + YF_a$ for $F_a/F_r > e$ [kN]

F _a iC _{or}	e	Y	
0.015	0.38	1.47	
0.029	0.40	1.40	
0.058	0.43	1.30	
0.087	0.46	1.23	
0.12	0.47	1.19	
0.17	0.50	1.12	
0.29	0.55	1.02	
0.44	0.56	1.00	
0.58	0.56	1.00	

i - number of bearings

C_{or} radial basic load rating of bearing from dimensional tables [kN]

Matched pairs, "O" and "X" arrangement :

$$\begin{array}{ll} P_r = F_r \, + Y_1 F_a & \text{for } F_a \, / F_r \, \leqq e \\ P_r = \, 0.72 F_r \, + \, Y_2 F_a & \text{for } F_a \, / F_r \, > e \end{array} \qquad \begin{bmatrix} kN \end{bmatrix} \label{eq:property}$$

F _a	е	Y ₁	Y ₂	
0.015	0.38	1.65	2.39	
0.029	0.40	1.57	2.28	
0.058	0.43	1.46	2.11	
0.087	0.46	1.38	2.00	
0.12	0.47	1.34	1.93	
0.17	0.50	1.26	1.82	
0.29	0.55	1.14	1.66	
0.44	0.56	1.12	1.63	
0.58	0.56	1.12	1.63	

Bearings with contact angle α = 12°, CA design : Single bearings and matched pairs, "T" arrangement :

$$P_r = F_r$$
 for $F_a / F_r \le e$
 $P_r = 0.45F_r + YF_a$ for $F_a / F_r > e$

for
$$F_a/F_r \leq e$$

F _a iC _{or}	е	Υ	
0.014	0.30	1.81	
0.029	0.34	1.62	
0.057	0.37	1.46	
0.086	0.41	1.34	
0.11	0.45	1.22	
0.17	0.48	1.13	
0.29	0.52	1.04	
0.43	0.54	1.01	
0.57	0.54	1.00	

i - number of bearings C_{or} - radial basic load rating of

bearing from dimensional tables [kN]

$$\begin{array}{ll} P_r = F_r + Y_1 F_a & \text{for } F_a \ / F_r \leq e \\ P_r = 0.74 F_r + Y_2 F_a & \text{for } F_a \ / F_r > e \end{array}$$

for
$$F_a/F_r \le e$$

for $F_a/F_r > e$

F _a C _{or}	е	Y ₁	Y ₂	
0.014	0.30	2.08	2.94	
0.029	0.34	1.84	2.63	
0.057	0.37	1.69	2.37	
0.086	0.41	1.52	2.18	
0.11	0.45	1.39	1.98	
0.17	0.48	1.30	1.84	
0.29	0.52	1.20	1.69	
0.43	0.54	1.16	1.64	
0.57	0.54	1.16	1.62	

Bearings with contact angle α = 10°, CB design : Single bearings and matched pairs, "T" arrangement :

$$P_r = F_r$$
 for $F_a/F_r \le e$
 $P_r = 0.46F_r + YF_a$ for $F_a/F_r > e$

$\frac{F_a}{iC_{or}}$	е	Υ	
0.014	0.29	1.88	
0.029	0.32	1.71	
0.057	0.36	1.52	
0.086	0.38	1.41	
0.1100	0.40	1.34	
0.1700	0.44	1.23	
0.2900	0.49	1.10	
0.4300	0.54	1.01	
0.5700	0.54	1.00	

i - number of bearings
 C_{or} radial basic load rating of radial basic load rating of individual [kN]

Matched pairs, "O" and "X" arrangement :

$$\begin{array}{ll} P_r = F_r + Y_1 F_a & \text{for } F_a / F_r \leqq e \\ P_r = 0.46 F_r + Y_2 F_a & \text{for } F_a / F_r > e \end{array}$$

for
$$F_a/F_r \leq e$$

$\frac{F_{a}}{C_{or}}$	е	Y ₁	Y ₂	
0.014	0.29	2.18	3.06	
0.029	0.32	1.94	2.78	
0.057	0.36	1.76	2.47	
0.086	0.38	1.63	2.29	
0.1100	0.40	1.55	2.18	
0.1700	0.44	1.42	2.00	
0.2900	0.49	1.27	1.79	
0.4300	0.54	1.17	1.64	
0.5400	0.54	1.16	1.63	

If the shaft is arranged in two single row angular contact ball bearings, the acting radial load is resolved into radial and axial components. The axial load of one bearing depends on the load and contact angle magnitude of the other bearing. These additional inner forces must be taken into account when calculating the bearing.

The following table shows relations for various bearing arrangements, when outer axial force $K_{a'}$ radial force $F_{rA'}$ or F_{rB} act. Radial forces act in the intersection point of the contact line with the shaft axis (dimension "a" in the dimension tables). Force magnitude is considered only in absolute values in calculations. Calculated force F_a is given into the calculation of radial equivalent dynamic load P_r .

Bearing	Force Conditions	Bearing Axial Lo	pad
Arrangement		Bearing A	Bearing B
A B	$\frac{F_{rA}}{Y_A} \le \frac{F_{rB}}{Y_B}$ $K_a \ge 0$	$F_{aA} = F_{aB} + K_a$	F _{aB} = e F _{rB}
F _{rA} F _{rB}	$\begin{split} \frac{F_{_{rA}}}{Y_{_{A}}} > & \frac{F_{_{rB}}}{Y_{_{B}}} \\ K_{_{a}} & \geq e \; (F_{_{rA}} - F_{_{rB}}) \end{split}$	$F_{\mathtt{a}\mathtt{A}} = F_{\mathtt{a}\mathtt{B}} + K_{\mathtt{a}}$	$F_{\mathtt{a}\mathtt{B}}=e\;F_{\mathtt{r}\mathtt{B}}$
F _{rB} F _{rA}	$\begin{split} \frac{F_{rA}}{Y_A} > & \frac{F_{rB}}{Y_B} \\ K_a < e \ (F_{rA} - F_{rB})^{\scriptscriptstyle 1)} \end{split}$	F _{aA} = e F _{rA}	$F_{aB} = F_{aA} - K_a$
A B	$\frac{F_{rA}}{Y_A} \ge \frac{F_{rB}}{Y_B}$ $K_a \ge 0$	F _{aA} = e F _{rA}	$F_{aB} = F_{aA} + K_{a}$
F _{rA} F _{rB}	$\frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B}$ $K_a \ge e (F_{rB} - F_{rA})$	$F_{aA}=eF_{rA}$	$F_{aB} = F_{aA} + K_{a}$
F _{rB} F _{rA}	$\begin{split} \frac{F_{\scriptscriptstyle fA}}{Y_{\scriptscriptstyle A}} < & \frac{F_{\scriptscriptstyle fB}}{Y_{\scriptscriptstyle B}} \\ K_{\scriptscriptstyle A} < & e \ (F_{\scriptscriptstyle fB} - F_{\scriptscriptstyle fA})^{\scriptscriptstyle (1)} \end{split}$	$F_{\mathtt{a}\mathtt{A}} = F_{\mathtt{a}\mathtt{B}} - K_{\mathtt{a}}$	F _{aB} = e F _{rB}
$^{1)}$ Valid for K $_{a}$ = 0 For bearings with contact angle α = For bearings with contact angle α = For other bearings e and Y according	26° (AA)	e = 1.14; Y = 0.57 e = 0.68; Y = 0.87	

Radial Equivalent Static Load

Bearings with contact angle α = 40°, BE and B design :

$$P_{nr} = 0.5F_{r} + 0.26F_{a}$$
 $(P_{nr} \ge F_{r})$ [kN]

Bearings with contact angle α = 26°, design AA and α = 25°, A design : Single bearings and matched pairs, "T" arrangement :

$$P_{nr} = 0.5F_r + 0.37F_a$$
 $(P_{nr} \ge F_r)$ [kN]

Matched pairs, "O" and "X" arrangements :

$$P_{cr} = F_c + 0.74F_3$$
 [kN]

Bearings with contact angle α = 15°, C design : Single bearings and matched pairs, "T" arrangement :

$$P_{nr} = 0.5F_r + 0.46F_a$$
 $(P_{nr} \ge F_r)$ [kN]

Matched pairs, "O" and "X" arrangement :

$$P_{or} = F_r + 0.92F_a$$
 [kN]

Bearings with contact angle α = 12°, CA design : Single bearings and matched pairs, "T" arrangement :

$$P_{nr} = 0.5F_{r} + 0.47F_{a}$$
 $(P_{nr} \ge F_{r})$ [kN]

Mateched pairs, "O" and "X" arrangement :

$$P_{rr} = F_r + 0.94F_a$$
 [kN]

Bearings with contact angle α = 10°, CB design : Single bearings and matched pairs, "T" arrangement "

$$P_{or} = 0.6F_{r} + 0.5F_{a}$$
 $(P_{or} \ge F_{r})$ [kN]

Matched pairs, "O" and "X" arrangement :

$$P_{or} = F_r + 0.97F_a$$
 [kN]

Single Row Angular Contact Ball Bearings d = 10 to 50 mm $\,$

Dimensions		Basic Load		Fatique	Limiting S		Bearing				
d	D	В	r _s min	r _{1S} min	а	Dynamic C _r	Static C _{or}	load limit P _u	Grease	cation with Oil	Designation
mm						kN		kN	min ⁻¹		
10	30	9	0,6	0,3	13,0	7,423	3,290	0,150	21000	28000	7200BETNG**
12	32	10	0,6	0,3	14,0	8,035	3,778	0,172	19000	26000	7201BETNG**
15	35	11	0,6	0,3	12,0	9,580	4,875	0,222	17000	20000	7202AA**
	35	11	0,6	0,3	16,0	8,595	4,368	0,199	17000	20000	7202B**
	42	13	1,0	0,6	18,0	13,946	6,575	0,299	14000	17000	7302BETNG**
17	47	14	1,0	0,6	15,0	16,627	7,890	0,359	12600	15000	7303AA** 7303B**
	47 47	14 14	1,0	0,6	20,0	15,188	7,200	0,327	12600 12600	15000 15000	7303B** 7303BTNG**
20	47	14	1,0	0,6	20,0	16,307 16,388	8,000	0,364			7204AA**
20	47	14	1,0 1,0	0,6 0,6	15,0 21,0	16,388	8,535 7,645	0,388	12600 12600	15000 15000	7204AA** 7204B**
	47	14	1,0	0,6	21,0	16,663	8,645	0,348	12600	15000	7204BTNG**
25	62	17	1,1	0,6	27,0	26,818	14,570	0,662	9400	11000	7305B**
20	62	17	1,1	0,6	27,0	26,842	14,570	0,662	10000	12500	7305BTNG**
35	80	21	1,5	1,0	35,0	40,388	24,100	1,095	7100	8400	7307B**
45	100	25	1,5	1,0	43,0	64,305	40,386	1,836	5600	6700	7309B**
55	100	21	1,5	1,0	29,5	58,101	40,460	1,839	5300	6300	7211AA**
	120	29	2,0	1,0	51,0	87,010	56,380	2,563	4700	5600	7311B**
60	110	22	1,5	1,0	32,0	70,120	50,625	2,301	5000	6000	7212AA**
** E	Bearing	gs in th	e new sta	andard	NEW F	ORCE (see t	he catalogue	NEW FOR	CE)		

Abuti	ment and Fi	llet Dimensio	ns	Weight
d				. ro.giit
u	d _a min	D _a max	r _a max	~
mm				ka
111111				kg
10	14,5	25,5	0,6	0,030
12	16,5	27,5	0,6	0,037
15	19,0	31,0	0,6	0,050
	19,0	31,0	0,6	0,050
	21,0	36,0	1,0	0,080
	23,0	41,0 41,0	1,0	0,120 0,120
	23,0 23,0	41,0	1,0 1,0	0,120
20	25,0	42,0	1,0	0,107
20	25,0	42,0	1,0	0,110
	25,0	42,0	1,0	0,110
	31,0	55,0	1,0	0,100
	31,0	55,0	1,0	0,235
35	42,0	71,0	1,5	0,480
	52,0	91,0	1,5	0,880
55	62,0	91,0	1,5	0,630
	65,0	110,0	2,0	1,450
60	67,0	101,0	1,5	0,800

Single Row Angular Contact Ball Bearings for High Rotational Speed d = 7 to 130 mm $\,$

		Dimei	nsions			Basic Loa	d Rating	Fatgique load
						Dynamic	Static	limit
d	D	В	r _s	r _{is}	a	C _r	C _{or}	P_{u}
			min	min				
mm						kN		kN
7	22	7	0,3	0,15	5,000	2,364	0,90	0,041
9	26	8	0,6	0,30	5,500	3,891	1,64	0,075
10	30	9	0,6	0,30	6,000	5,335	2,29	0,104
	30	9	0,6	0,30	6,500	7,124	2,90 3,28	0,132
	30 30	9	0,6 0,6	0,30	7,000 7,180	7,729 4,387	2,10	0,149 0,095
	30	9	0,6	0,30 0,30	9,000	7,529	3,20	0,095
	30 30	9	0,6	0,30	9,160	4,181	2,00	0,091
12	32	10	0,6	0,30	7,000	5,880	2,65	0,120
12	32	10	0,6	0,30 0,30	7,500	7,980	3,46	0,157
	32	10	0,6	0,30	8,000	8,622	3,89	0,177
	32	10	0,6	0.30	10,000	8,275	3.78	0,172
	32	10	0,6	0,30 0,15	10,500	7,505	3,21	0,146
15	32	9	0,3	0,15	7,648	4.695	2,30	0,105
	32	9	0,3 0,3 0,3	0,15	9,980	6,622	3,20	0,145
	32	9	0,3	0,15	9,980	4,490	2,20	0,100
	32	9	0,3	0,30 0,30	7,648	6,955	3,50	0,159
	35 35	11 11	0,6	0,30	7,500 8,000	6,940 8,855	3,45 4,18	0,157
	35	11	0,6 0,6	0,30 0,30	11,000	9,078	4,18 4,44	0,190 0,202
	35	11	0,6	0,60	9,000	9,483	4,44	0,202
17	35	10	0,6 0,3	0,00	8,480	6,235	4,59 3,40	0,209
.,	35	10	0,3	0.15	16,780	7 562	4,25	0,193
	35 35	10	0,3 0,3	0,15 0,15	16,780	7,562 5,916	3,00	0,136
	35	10	0,3	0,30	8,480	7,896	4,45	0,202
	40	12	0,6	0,30 0,30	8,500	7,896 8,362	4,45 4,25	0,202 0,193
	40	12	0,6	0,30 0,30	9,000	10,904	5,29	0,240
	40	12	0,6	0,30	13,000	11,182	5,62	0,255
	40	12 12	0,6	0,60 0,30	10,000	11,631	5,82	0,265 0,282
20	42	12	0,6	0,30	9,150	11,899	6,20	0,282
	42 42	12 12	0,6 0,6	0,30 0,30	9,150	7,940 11,707	4,20 6,00	0,191
	42	12	0,6	0,30	12,220 12,220	7,740	4,00	0,273 0,182
	47	14	1,0	0,30 0,60	10,000	10,224	5,54	0,162
	47	14	1,0	0,60	10,500	14,572	7.32	0,333
	47	14	1,0	0,60	12,000	15,685	7,32 8,06	0,366
	47	14	1,0	0.60	14,000	14.952	7 77	0,353
	47	14	1,0	0,60	15,000	13,897	6.99	0,318
25	47	12	0,6	0,30	10,320	13,750	8,60	0,391
	47	12	0,6	0,60 0,30 0,30	10,320	9,532	8,60 5,70	0,259
	47	12	0,6	0,30 0,30 0,60	13,890	13,186	8,20	0,373
	47 52	12 15	0,6	0,30	13,890	9,121 14,091	5,60 7,96	0,255 0,362
	52 52	15	1,0 1,0	0,60	11,000 11,500	15,921	7,96 8,63	0,362
	52	15	1,0	0,60	13,000	17,679	10,28	0,392
	52	15	1,0	0,60	16,000	16,917	9,81	0,446
	52	15	1,0	0.60	17,000	14,895	8,15	0,370
30	55	1.3	1,0	0,60	12,200	16,234	10,30	0,468
	55	13	1,0	0.60	12,200	11,331	7,20	0,327
	55	13	1,0	0,60 0,60	25,850	15,515 10,817	10,10	0,459 0,314
	55	13	1,0	0,60	25,850	10,817	6,90	0,314
	62	16	1,0	0,60 0,60	12,000	18,020	10,72	0,487
	62	16	1,0	0,60	13,000	22,072	12,42	0,565
	62	16	1,0	0,60	14,000	24,734	14,72	0,669
	62	16 16	1,0 1,0	0,60	19,000 19,000	20,877 23,483	11,58 14,07	0,526 0,640
35	62	14	1,0	0,60	13,000	20,680	14,40	0,655
- 55	62 62 62 62	14	1,0	0,60 0,60 0,60 0,60	13,490 13,490	14,298	10,00	0,455
	62	14	1,0	0,60	18,500	18,476	12,05	0,548
** Poorin						IN NEW FORCE	,00	2,2.0

^{**} Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

Limiting Speed				Axial preload	Bearing	Weight	
		cation with	of	coupled bearin	as	Designation	• • • • • • • • • • • • • • • • • • •
					3-		
	Grease	Oil					~
	min ⁻¹		L	M N	S		kg
	94000	140000		IN		A727CBTA**	0,013
	71000	106000				A729CBTA**	0,020
	60000	89000	20	70	140	B7200CBTB**	0.027
	42000	63000	33	105	213	B7200CATB**	0,028
	56000	85000	45	140	280	B7200CTA**	0,030
	65000	100000	15	60	130	CB7200CTA**	0,028
	50000	75000	65	240	450	B7200ATA**	0,030
	55000	85000	22	80	195	CB7200ATA**	0,028
	56000	84000	22	77	154	B7201CBTB**	0,035
	38000	56000	37	118	235	B7201CATB**	0,036
	50000	75000	50	160	320	B7201CTA**	0.037
	45000	67000	75	270	540	B7201ATA**	0.037
	33000	50000				AC7201ATA***	0,036
	55000	85000	11	52	115	CB7002CTA**	0,043
	40000	65000	37	155	355	B7002ATA**	0,043
	50000	72000	18	68	170	CB7002ATA**	0,043
	45000	70000	30	110	225	B7002CTA**	0,043
	50000	75000	25	90	180	B7202CBTB**	0,042
	33000	50000	41	132	264	B7202CATB**	0,043
	40000	60000	80	290	590	B7202ATA**	0,045
	45000	67000	55	170	350	B7202CTA**	0,045
	55000	80000	18	75	165	CB7003CTA**	0,039
	38000	56000	50	190	420	B7003ATA**	0,039
	45000	65000	30	100	230	CB7003ATA**	0,039
	44000	67500	40	150	260	B7003CTA**	0,039
	45000	67000	31	109	219	B7203CBTB**	0,060
	28000	42000	51	163	326	B7203CATB**	0,061
	36000	53000	100	360	730	B7203ATA**	0,064
	38000	56000	70	210	430	B7203CTA**	0,064
	39000	57000	55	180	400	B7004CTA**	0,066
	45000	65000	25	100	200	CB7004CTA**	0,066
	35000	50000	75	290	645	B7004ATA**	0,066
	35000	55000	30 38	120	300	CB7004ATA**	0,066
	40000	60000	68	134 218	268 437	B7204CBTB** B7204CATB**	0,098
	25000 32000	38000 48000	90	290	580	B7204CTA**	0,100 0,103
	30000	45000	140	490	950	B7204CTA**	0,103
	22000	33000	156	455	910	B7204ATA**	0,103
	35000	50000	65	220	470	B7005CTA**	0,080
	40000	55000	30	120	250	CB7005CTA**	0,080
	30000	45000	100	360	740	B7005ATA**	0,080
	35000	50000	35	180	410	CB7005ATA**	0.080
	33000	50000	53	183	367	B7205CBTB**	0,119
	22000	33000	74	237	474	B7205CATB**	0,122
	28000	43000	100	330	650	B7205CTA**	0,125
	26000	40000	155	550	1100	B7205ATA**	0,125
	20000	30000	167	488	977	B7205AATB**	0,124
	26000	40000	75	260	555	B7006CTA**	0,115
	30000	45000	37	140	300	CB7006CTA**	0,115
	24000	38000	105	405	885	B7006ATA**	0,115
	28000	43000	40	200	450	CB7006ATA**	0,115
	28000	42000	67	235	470	B7206CBTB**	0,184
	20000	30000	102	325	655	B7206CATB**	0,189
	24000	38000	140	450	910	B7206CTA**	0,193
	17000	25000	233	679	1740	B7206AATB**	0,192
	22000	36000	220	770	1530	B7206ATA**	0,193
	22000	36000	100	330	710	B7007CTA**	0,155
	30000	45000	48	180	380	CB7007CTA**	0,155
	9400	11000	207	605	1210	B7007AATB**	0,148

Single Row Angular Contact Ball Bearings for High Rotational Speed d = 7 to 130 mm $\,$

		Dimer	nsions			Basic Load	Fatgique load	
						Dynamic	Static	limit
d	D	В	r _s	r _{is}	а	C _r	C _{or}	P_{u}
			min	min		,	or	u
			ITIIII	IIIIII		1.51		1.51
mm				0.00	00.000	kN	10.05	kN
35	62	14	1,0	0,60	28,980	20,097 13,910	13,25	0,602
	62 72	14 17	1,0	0,60	28,980		9,40	0,427 0.791
	72	17	1,1 1,1	0,60 0,60	10,000 13,000	29,131 22,523	17,40 14,34	0,791
	72	17	1,1	0,60	14,000	31,042	18,60	0,845
	72	17	1,1	0,60	15,000	32,929	20,29	0,843
	72	17	1,1	0,60 0,60	16,000	32,669	20,04	0,922
	72	17	1,1	0,60	21,000	31,002	19,10	0,868
40	68	15	1,0	0,60	14,730	21,960	16,10	0,732
	68	15	1,0	0,60	14,730	15,151	11,00	0,500
	68	15	1,0	0,60	20,100	20,933	15,20	0,691
	68	15	1,0	0.60	20,100	14,111	10,60	0,482
	68	15	1,0	0.60	20,500	19,859	14,13	0,642
	80	18	1,1	0.60	14,000	26,240	17,30	0.786
	80	18 18	1,1	0,60	15,500	39,375	23,77	1,080
	80	18	1,1	0,60	17,000	41,450	26,02	1 183
	80	18	1,1	0,60	23,000	39,759	24,90	1,132
45	68	12	0,6	0,30	13,000	16,018	12,60	0,573
	68	12	0,6	0,30	13,000	11,502	9,10	0,414
	68	12	0,6	0,30	18,190	15,137	12,00	0,545
	68	12	0,6	0,30	18,190	10,777	8,80	0,400
	75	16	1,0	0,60	0,030	27,020	20,40	0,927
	75 75	16 16	1,0 1,0	0,60 0,60	16,030	18,921	14,30 19,30	0,650
	75	16	1,0	0,60	21,980	25,680	19,30	0,877
	75 85	19	1,0 1,1	0,60 0,60	21,980 15,000	17,993 30,327	13,50 20,31	0,614 0,923
	85	19	1,1	0,60	16,500	39,540	24,61	1,119
	85	19	1,1	0,60	18,000	43,841	28,81	1,310
	85	19	1,1	0,60	25,000	41,893	27 54	1,252
50	80	16	1,0	0,60	15,800	24,133	27,54 18,52	0,842
	80	16	1,0	0.60	19,730	27.716	21.80	0,991
	80	16	1,0	0,60 0,60	19,730	27,716 19,740	21,80 15,30	0,695
	80	16	1,0	0.60	23,150	26,273 18,708	20.80	0.945
	80	16	1,0	0,60	23,150	18,708	14,60	0,664
	90	20	1,1	0,60	16,000	34,593	23,56	1,071
	90	20	1,1	0,60	17,500	41,758	27,26	1,239
	90	20	1,1	0,60	19,000	45,871	31,73	1,442
	90	20	1,1	0,60 0,60 0,60	26,000	39,229	25,92	1,178
	90	20	1,1	0,60	26,000	43,970	30,08	1,367
55	90	18	1,1	1,00	26,500	33,314	25,38	1,154
	100 100	21 21	1,5 1,5	1,00 1,00	17,000 18,500	41,229 51,719	29,12 34,50	1,324 1,568
	100	21	1,5	1,00	21,000	56,847	39,92	1,815
	100	21	1,5	1,00	29,000	54,288	38,23	1,738
60	95	18	1,5	1,00	21,660	38,610	32,00	1,455
30	95	18	1,1	1,00	21,660	27,085	22,40	1,018
	95	18	1,1	1,00	27,100	36,807	30,40	1,382
	95	18	1,1	1,00	27,100	25,810	21,30	0,968
	110	22	1,5	1,00	18,000	47.450	33,80	0,968 1,536
	110	22	1.5	1,00	20,000	64,377 70,784	42,60	1.936
	110	22	1,5	1,00	22,000	70,784	49,07	2,230
	110	22	1,5	1,00	31,000	67,627	47,07	2,140
	110	22	1,5	1,00	32,000	60,741	39,96	1,816
65	120	23	1,5	1,00	21,500	78,185	54,78	2,490
	120	23	1,5	1,00	24,000	81,130	58,70	2,668
70	120 110	23 20	1,5	1,00 0,60	33,000	76,670 53,288	56,06	2,548
70	110	20	1,1 1,1	0,60	22,060 22,060	53,288 36,807	45,00 31,20	2,045 1,418
	110	20	1,1	0,60	30,990	50,628	42,90	1,418
	110	20		0,00		50,026	42,00	1,000

^{**} Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

I institute	0		Assist sustant	Daning	\\/-: -+	
Limiting			Axial preload	~~	Bearing	Weight
for Lubric	ation with	OI	coupled bearing	gs	Designation	
Grease	Oil					
Grease	Oii	L	М	S		~
min ⁻¹			N			kg
20000	32000	140	530	1150	B7007ATA**	0,155
25000	40000	60	270	600	CB7007ATA**	0,155
13000	20000	326	952	1900	B7207AATB**	0,281
25000	38000	84	280	588	B7207CBTB**	0,268
16000	24000	144	462	925	B7207CATB**	0,275
16000	24000	153	490	981	B7207CAMB**	0,323
20000	34000	185	600	1200	B7207CTA**	0,280
19000	32000	290	1010	2010	B7207ATA**	0,280
20000 26000	34000 40000	105 50	350	755 410	B7008CTA** CB7008CTA**	0,185
19000	30000	150	190 560	1200	B7008ATA**	0,185 0,185
22000	35000	60	280	630	CB7008ATA**	0,185
8400	10000	222	645	1290	B7008AATB**	0,185
22000	33000	98	343	686	B7208CBTB**	0,337
13000	20000	180	587	1170	B7208CATB**	0,347
18000	30000	235	770	1540	B7208CTA**	0,350
17000	28000	370	1100	2500	B7208ATA**	0,350
20000	32000	90	320	535	B71909CTA**	0,130
25000	38000	35	140	310	CB71909CTA**	0,110
18000	30000	100	390	840	B71909ATA**	0,130
22000	35000	70	200	450	CB71909ATA**	0,110
18000	30000	140	470	935	B7009CTA**	0,260
23000 17000	37000 28000	70 195	250 750	530 1500	CB7009CTA** B7009ATA**	0,230 0,260
21000	33000	85	370	840	CB7009ATA**	0,230
20000	30000	113	396	792	B7209CBTB**	0,381
12600	19000	184	590	1175	B7209CATB**	0,381
17000	28000	250	810	1630	B7209CTA**	0,387
15000	24000	390	1200	2710	B7209ATA**	0,387
9500	11000	270	793	1580	B7010AATB**	0,253
17000	28000	150	510	965	B7010CTA**	0,250
22000	35000	75	280	580	CB7010CTA**	0,210
15000	24000	210	750	1550	B7010ATA**	0,250
18000	30000 27000	90 129	400 450	880 905	CB7010ATA** B7210CBTB**	0,210 0,432
18000 12000	18000	195	623	1245	B7210CB1B**	0,432
16000	26000	260	850	1710	B7210CA1B	0,448
10600	16000	438	1275	2550	B7210AATB**	0,447
14000	20000	400	1400	2810	B7210ATA**	0,448
6300	7500	371	1080	2160	B7011AATB**	0,395
17000	25000	153	538	1075	B7211CBTB**	0,567
11000	17000	241	771	1540	B7211CATB**	0,582
14000	22000	320	1010	2100	B7211CTA**	0,586
13000	20000	500	1710	3500	B7211ATA**	0,586
14000	22000	210	700	1305	B7012CTA**	0,410
18000 13000	30000 20000	100 290	360 1000	780 2100	CB7012CTA** B7012ATA**	0,350 0,410
15000	25000	130	540	1150	CB7012ATA**	0,350
15000	22000	172	602	1200	B7212CBTB**	0,330
10000	15000	291	932	1860	B7212CATB**	0,754
13000	20000	380	1200	2500	B7212CTA**	0,754
12000	19000	610	2130	4200	B7212ATA**	0,754
8900	13000	657	1915	3830	B7212AATB**	0,759
8900	13000	352	1128	2250	B7213CATB**	0,994
12000	19000	440	1400	2900	B7213CTA**	0,999
11000	18000	700	2410	4810	B7213ATA**	0,999
13000	19000	280	930	1825	B7014CTA**	0,600
15000 11000	25000 17000	140 390	500 1390	1020 2910	CB7014CTA** B7014ATA**	0,500 0,600
11000	17000	080	1000	2010	DIVITALA	0,000

Single Row Angular Contact Ball Bearings for High Rotational Speed d = 7 to 130 mm

		Dime	nsions	Basic Loa	nd Rating	Fatgique load		
						Dynamic	Static	limit
d	D	В	r_s	r _{1S}	а	C_{r}	C _{or}	P _u
			min	min				
mm						kN		kN
70	110	20	1,1	0,60	32,000	45,430	36,46	1,657
	125	24	1,5	1,00	20,500	64,709	47,66	2.166
	125	24	1,5	1,00	22,500	84,775	60,13	2,733
	125	24	1,5	1,00	25,000	87,597	64,55	2,934
	125	24	1,5	1,00	30,990	35,567	21,80	0,991
	125	24	1,5	1,00	35,000	83,397	61,56	2,798
75	130	25	1,5	1,00	23,500	84,948	61,39	2,756
	130	25	1,5	1,00	26,000	87,285	65,44	2,938
	130	25	1,5	1,00	36,000	83,103	62,52	2,807
	130	25	1,5	1,00	37,500	82,540	62,49	2,806
	130	25	1,5	1,00	37,500	78,887	58,32	2,618
80	125	22	1,1	0,60	22,000	61,117	50,01	2,245
00	125	22	1,1	0,60	24,730	66,963	57,50	2,582
	125	22	1,1	0,60	24,730	46,894	40,20	1,805
	125	22	1,1	0,60	34,900	64,095	55,10	2,474
	125	22	1,1	0,60	34,900	44,874	38,60	1,733
	125	22	1,1	0,60	36,000	59,265	49,44	2,220
	140	26	2,0	1,00	24,500	99,345	73,05	3,166
	140	26	2,0	1,00	28,000	102,080	77,56	3,361
	140	26	2,0	1,00	39,000	97,328	73,95	3,205
	140	26	2,0	1,00	40,000	92,645	68,04	2,949
85	130	22	1,1	0,60	25,400	68,386	58,70	2,573
00	130	22	1,1	0,60	25,400	47,914	41,40	1,815
	130	22	1,1	0,60	30,060	67,847	58,20	2,552
	130	22	1,1	0,60	30,060	47,558	40,70	1,784
	130	22	1,1	0,60	37,000	60,265	52,69	2,310
	130	28	1,1	0,60	37,000	62,314	55,33	2,426
	150	28	2,0	1,00	26,500	111,477	86,08	3,610
	150	28	2,0	1,00	30,000	115,662	88,55	3,713
	150	28	2,0	1,00	42,000	108,988	86,45	3,625
	150	28	, -	1,00	42,500	103,780	80,67	3,383
90	140	24	1,5	1,00	24,000	74,528	62,47	2,648
	140	24	1.5	1,00	27,410	81,622	72,40	3,069
	140	24	1,5 1,5	1,00	27,410	57,187	57,90	2,454
	140	24	1,5	1,00	38,810	77,461	69,00	2,925
	140	24	1,5	1,00	38,810	54,305	40,50	1,717
	140	24	1,5	1,00	40,000	72,276	61,75	2,617
	180	34	2,1	1,10	51,000	156,339	120,96	4,732
100	150	24	1,5	0,60	28,750	89,607	80,80	3,285
	150	24	1,5	0,60	28,750	61,827	55,70	2,265
	150	24	1,5	0,60	41,150	84,040	76,40	3,106
	150	24	1,5	0,60	41,150	58,023	52,70	2,143
	180	34	2,1	1,10	35,760	105,682	86,00	3,304
	180	34	2,1	1,10	36,000	171,671	136,01	5,225
	180	34	2,1	1,10	49,770	98,808	83,00	3,189
	180	34	2,1	1,10	50,000	164,214	129,98	4,993
110	140	16	1,0	0,60	24,700	44,428	49,60	2,017
	140	16	1,0	0,60	34,000	42,287	46,30	1,882
120	180	28	2,0	1,00	30,000	112,019	103,66	3,847
	180	28	2,0	1,00	34,100	114,338	107,80	4,001
	180	28	2,0	1,00	34,100	78,921	75,40	2,798
	180	28	2,0	1,00	48,980	107,543	102,10	3,789
	180	28	2,0	1,00	48,980	74,299	71,50	2,654
	180	28	2,0	1,00	50,500	106,191	101,28	3,759
130	165	11	1,0	0,50	41,500	14,903	19,10	0,715
						IO NEW FORCE)		

^{**} Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)
*** Separable bearing dedicated to separable arrangements of textile spindles parts

	ial preload	Limiting Speed				
· ·	•	of .	•	for Lubrica		
d bearings Designation	pled bearings	Of (MOI WILL	IOI LUDIIC		
			Oil	Grease		
M S	М	L	Oii	arcasc		
N	N			min ⁻¹		
140 2050 B7014AATB**	1140	493	12000	7900		
20 1640 B7214CBTB**	820	234	19000	12600		
190 2350 B7214CATB**	1190	373	12000	7900		
540 3170 B7214CTA**	1540	480	18000	11000		
20 1600 CB7014ATA**	720	180	20000	14000		
	2620	760	17000	10000		
	1250	383	11000	7500		
	1560	480	18000	11000		
	2640	760	16000	9500		
	2620	898	5000	4200		
	2500	858	10000	6700		
	885	276	11000	7500		
	1140	350	18000	10000		
	620	180	22000	14000		
	1800	500	15000	9000		
	950	250	20000	13000		
	855	267	10000	6700		
	1432	447	10000	6700		
	1840	560	17000	10000		
	3050	880	15000	9000		
	2940	1008	9400	6300		
	1240	380	17000	10000		
	640 1870	190 540	19000 15000	12000 9000		
	1000	260	18000	10000		
	1900	653	5000	4200		
	1970	675	9400	6300		
	1608	502	9400	6300		
	2010	630	15000	9000		
	3450	1000	13000	8000		
	3290	1310	8900	6000		
	1080	338	9400	6300		
	1450	450	16000	10000		
	760	230	19000	12000		
	2200	620	15000	9000		
	1150	315	17000	10000		
	2280	783	4700	4000		
	4930	1690	7900	5300		
	1520	470	14000	8000		
15 1700 CB7020CTA**	815	235	18000	11000		
	2340	680	12000	7000		
	1265	335	15000	9000		
	1460	450	15000	10000		
	3100	940	12000	7500		
	2200	640	13000	8000		
	5200	1480	10000	6700		
	700	200	13000	8000		
	900	350	11000	7000		
	1617	505	7500	5000		
	2000	670	10000	7000		
	1100	320	14000	9000		
	3200	950	9000	6000		
	1680	450	12000	8000		
	3363	1153	3500	3000		
B70826AAMB**			3800	3200		

Double Row Angular Contact Ball Bearings

Double row angular contact ball bearings principally correspond to a matched pair of single row angular contact ball bearings in an "O" arrangement. At the same size (d and D) the matched pair has a smaller width.

The bearing has a filling slot on one side. If axial forces, which act in one direction, prevail, the bearing should be mounted so that the forces should not act against the filling slot. They can also be supplied equipped with plastic cage PA6 or PA66, designation TNG.

Bearing design enables the contact angle $\alpha = 32^{\circ}$. That is why they can carry tilting moments in the axial plane. If there is lack of space only one bearing is sufficient for arranging a rotating part.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design is a part of data in the dimension tables. The difference from standard design is designated by additional symbols (section 2.2).

Cage

Double row angular contact ball bearings have cages pressed of steel sheet. They are not indicated. This is not valid for bearings with plastic cage (TNG) because they are not equipped with filling slot.

Tolerance

Bearings are commonly produced in normal tolerance class PO, it is not indicated. For more demanding arrangements bearings in higher tolerance class P6 are produced.

Limiting values of dimension and running accuracy are in tables 10 and 11 and comply with standards ISO 199 and ISO 492.

Axial Clearance

Bearings are commonly produced with normal axial clearance, it is not indicated. For special arrangements bearings with smaller C2 and greater C3 and C4 axial clearance are delivered.

Misalignment

Bearings form a very rigid arrangement especially sensitive to rings misalignment caused by mounting inaccuracies.

Radial Equivalent Dynamic Load

$$\begin{array}{ll} P_{r} = F_{r} + 0.73 F_{a} & \text{for } F_{a} \ / F_{r} \leq 0.86 \\ P_{r} = 0.62 F_{r} \ + 1.17 F_{a} & \text{for } F_{a} \ / F_{r} > 0.86 \end{array}$$

Radial Equivalent Static Load

$$P_{or} = F_{r} + 0.63F_{a}$$

Double Row Angular Contact Ball Bearings d = 10 to 75 mm

Dir	mensions	5			Basic Load Dynamic	d Rating Static	Fatique limit	load	Limiting for Lubri		Bearing Designation
d	D	В	r _s	а	C,	C _{or}	P		with	Cation	Designation
			5		r	Of	u		Grease	Oil	
mm					kN		kN	kN	min ⁻¹		
10	30	14,0	0,6	20	9,253	5,840	0,265		16000	19000	3200X**
	30	14,3	0,6	20	9,253	5.840	0,265		16000	19000	3200**
12	32	15,9	0,6	22	11,050	7,080	0,322		14000	17000	3201**
15	35	15,9	0,6	23	10,381	7,500	0,341		13000	16000	3202**
	42	19,0	1,0	27	17,369	11,900	0,541		10600	12600	3302**
17	40	17,5	0,6	27	14,418	10,600	0,482		11000	13000	3203**
	47	22,2	1,0	31	23,649	16,200	0,736		9400	11000	3303**
20	47	20,6	1,0	31	19,905	15,000	0,682		9400	11000	3204**
	52	22,2	1,1	34	23,656	18,500	0,841		8400	10000	3304**
25	52	20,6	1,0	35	21,539	18,100	0,823		8400	10000	3205**
	62	25,4	1,1	40	32,881	26,600	1,209		7100	8400	3305**
30	62	23,8	1,0	41	30,998	27,100	1,232		7100	8400	3206**
	72	30,2	1,1	47	43,688	36,200	1,645		6000	7100	3306**
35	72	27,0	1,1	47	42,125	37,600	1,709		6000	7100	3207**
00	80	34,9	1,5	54	56,219	47,300	2,150		5300	6300	3307**
40	80	30,2	1,1	52	48,186	43,800	1,991		5300	6300	3208**
.0	90	36,5	1,5	58	59,431	59,600	2,709		4700	5600	3308**
45	85	30.2	1,1	56	51,994	51,100	2,323		5000	6000	3209**
40	100	39,7	1,5	64	82,479	73,600	3,345		4200	5000	3309**
50	90	30,2	1,1	59	59,553	58,400	2,655		4500	5300	3210**
30	110	44,4	2,0	73	99,898	96,200	4,373		3800	4500	3310**
55	100	33,3	1,5	64	74,481	66,800	3,036		4200	5000	3211**
33	120	49,2	2,0	80	110,379	108,000	4,909		3300	4000	3311**
60	110	36,5	1,5	71	82,491	85,800	3,900		3800	4500	3212**
00	130	54,0	2,1	86	128,709	128,000	5,818		3200	3800	3312**
65	120	38.1	1,5	76	90,746	94,400	4,291		3500	4200	3213**
03	140	58,7	2,1	94	146,328	147,000	6,600		3000	3500	3313**
70	125	39,7	1,5	81	87,349	98,100	4,459		3200	3800	3214**
75	130	41,3	1,5	84	96,151	110,000	4,939		3200	3800	3215**
75	130	41,3	1,5	04	96,131	110,000	4,939		3200	3000	3213
	** D					A FOROE (NIEV.	W EODOI	_,		
	Bear	ings in	tne n	ew s	tandard NEV	V FORCE (see the catalo	gue NEV	V FORCE	=)		

Abutn	nent and Fil	let Dimensio	ins	Weight
d	d _a min	D _a max	r _a max	
mm				kg
10	14	25	0,6	0,05
	14	25	0,6	0,05
12	16	27	0,6	0,06
15	19	30	0,6	0,07
	21	36	1,0	0,13
17	21	35	0,6	0,10
	23	41	1,0	0,19
20	25	42	1,0	0,17
	27	45	1,0	0,23
25	30	46	1,0	0,19
- 00	32	<u>55</u>	1,0	0,37
30	35 37	56 65	1,0 1,0	0,31 0,58
35	41	65	1,0	0,58
33	44	71	1,5	0,48
40	46	73	1,0	0,65
40	49	81	1,5	1,05
45	51	78	1,0	0,70
	54	91	1,5	1,41
50	56	83	1,0	0,74
	60	100	2.0	1,90
55	62	91	1,5	1,05
	65	110	2,0	2,48
60	67	101	1,5	1,36
	72	118	2,0	3,17
65	72	111	1,5	1,76
70	77	128	2,0	4,01
70 75	77	116	1,5	1,93
/5	82	121	1,5	2,08
				10

Double Row Self-Aligning Ball Bearings

These bearings are designed with two rows of balls and a spherical raceway in the outer ring. This allows certain misalignment of the inner ring against outer ring around bearing centre without the bearing function being threatened. Bearings are produced with cylindrical and tapered bore and are non-separable. Misalignment ability by not changed functionality determine this bearings to utilize where some bore misalignment in housings or deflection and shaft oscillation are presumed. With respect to a small contact angle and imperfect conformity of balls to raceways they are not suitable for accommodating larger axial forces.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design and in design with tapered bore is in the dimension tables. Difference from standard design is designated by additional symbols (section 2.2).

Tapered Bore

Bearings with tapered bore have taper 1:12. Bearings are fixed on cylindrical shafts by means of adapter sleeves. Adapter sleeves designation corresponding to individual bearings is in the dimension tables of this publication.

Cage

Bearings have the standard design cages according to the following table (material symbol and cage design are mostly not indicated).

Bearings with Pressed Steel or Brass Cage	Bearings with Machined Brass or Steel Cage								
d<10mm, 126	-								
1200 to 1222	1224 to 1230								
2200 to 2222	_								
1300 to 1322	1324								
2304 to 23201 ¹⁾	2322								
1) Bearing 2305 is produced with a solid cage with filling (TNGN)									

Tolerance

Bearings are commonly produced in normal tolerance class PO which is not indicated. Bearings for more demanding arrangements are delivered in tolerance class P6.

Limiting values of dimension and running accuracy are shown in tables 10 abd 11 and comply with the standards ISO 199 and ISO 492.

Radial Clearance

Bearings commonly produced have a normal clearance which is not indicated. For special arrangements bearings with smaller radial clearance C2 or greater radial clearance C3. C4 and C5 are delivered.

Misalignment

Values of permissible bearing misalignment for keeping its functionality are shown in the following table.

Bearing Type	Permissible misalignment
d<10mm 126, 13, 23	3°
12, 22	2°30'

Radial Equivalent Dynamic Load

$$\begin{array}{ll} P_{_{\Gamma}}=F_{_{\Gamma}}+Y_{_{1}}F_{_{a}} & \text{pro }F_{_{a}}/F_{_{r}} \leq e \\ P_{_{\Gamma}}=0.65F_{_{\Gamma}}+Y_{_{2}}F_{_{a}} & \text{pro }F_{_{a}}/F_{_{r}} > e \end{array} \qquad \begin{bmatrix} kN \end{bmatrix}$$

Factor values e, Y_1 and Y_2 for individual bearings are shown in the dimension tables of this publication.

Radial Equivalent Static Load $P_{or} = F_{r} + Y_{o} F_{a}$

$$P_{or} = F_r + Y_0 F_a$$
 [kN]

Factor values Y_n for individual bearings are shown in the dimension tables of this publication.

Double Row Self-Aligning Ball Bearings d = 6 to 60 mm

Dime	ensions	;			ad Rating	Fatique	Limiting S		Bearing De	esignation
d	D	B B ₁ 1)	r.	Dynamic C,	Static C _{or}	load limit	for Lubric	ation with		
		1	-s	-r	or	Pu	Grease	Oil	with Cylindr Bore	ical with Tapered Bore
mm				kN		kN	min ⁻¹			
10	30	14	0,6	7,28	1,58	0,07	25000	30000	2200	
12	32	10	0,6	5,59	1,26	0,06	24000	28000	1201	
15	35	11	0,6	7,41	1,74	0,08	21000	25000	1202	
	35	14	0,6	7,61	1,81	0,08	21000	25000	2202	
17	40	12	0,6	8,14	2,03	0,09	17000	20000	1203**	1203K
20	47	14	1,0	10,24	2,66	0,12	14000	17000	1204**	1204K
25	52	15	1,0	12,46	3,35	0,15	12600	15000	1205**	1205K
	52	18	1,0	12,88	3,48	0,16	12600	15000	2205**	2205K
	62	17	1,1	18,49	5,01	0,23	10000	13000	1305**	1305K
	62	24	1,1	25,24	6,56	0,30	10000	12000		N**2305KTNGN
30	62	16	1,0	16,69	4,73	0,22	11000	13000	1206**	1206K
	62	20	1,0	15,76	4,55	0,21	11000	13000	2206**	2206K
	72	19	1,1	22,04	6,31	0,29	9400	11000	1306**	1306K
	72	27	1,1	32,34	8,74	0,40	8400	10000	2306**	2306K
35	72	17	1,1	16,27	5,11	0,23	9400	11000	1207**	1207K
	72	23	1,1	22,35	6,68	0,30	9400	11000	2207**	2207K
40	80	18	1,1	19,88	6,56	0,30	7900	9400	1208**	1208K
	90	23	1,5	29,87	9,81	0,45	7100	8400	1308**	1308K
	90	33	1,5	46,14	13,30	0,60	6700	7900	2308**	2308K
45	85	19	1,1	22,56	7,36	0,33	7500	8900	1209**	1209K
	85 100	23 25	1,1	24,00	8,10	0,37	7500	8900 7500	2209** 1309**	2209K 1309K
	100	36	1,5 1.5	39,14 55,41	12,80 16,50	0,58 0.75	6300 6000	7100	2309**	2309K
50	90	20	1,5	23,38		0,75	7100	8400	1210**	1210K
50	90	23	1,1	24,00	8,10 8,41	0,37	7100	8400	2210**	2210K
	110	27	2,0	44,60	14,10	0,56	5600	6700	1310**	1310K
55	100	21	1,5	27,60	10,00	0,64	6300	7500	1211**	1211K
55	100	25	1,5	27,80	10,00	0,45	6300	7500	2211**	2211K
60	110	22	1,5	31,00	11,70	0,43	5600	6700	1212**	1212K
60	110	28	1,5	35,23	12,60	0,53	5600	6700	2212**	2212K
	130	31	2,0	58,81	20,70	0,94	4700	5600	1312**	1312K
	100	J1	۷,0	30,01	20,70	0,34	4700	3000	1012	131210
	** Bea	rinas in th	e new s	standard N	EW FORC	E (see the c	atalogue NE	W FORCE)		
		3				(,		
				he bearing						

Abuti	ment and F	illet Dimensio	ons	Weight	Weight Corres-					
				110.9		ponding	Factors			
d	d _a min	D _a max	r _a max	~	K	Adapter Sleeve	е	Y ₁	Y ₂	Y ₀
mm				kg						
10	14	26	0,6	0.047			0.65	1,0	1,5	1,0
12	16	18	0,6	0.040			0.34	1,0	2,9	2,0
15	19	31	0,6	0.049			0,33	1,9	2,9	2,0
.0	19	31	0,6	0,060			0,49	1,3	2,0	1,3
17	21	36	0,6	0,073	0,071	H203	0,31	2,1	3,2	2,2
20	25	42	1,0	0,120	0,118	H204	0,27	2,3	3,6	2,4
25	30	47	1,0	0,141	0,138	H205	0,27	2,3	3,6	2,4
	30	47	1,0	0,163	0,158	H305	0,43	1,5	2,3	1,5
	32	55	1,0	0,264	0,259	H305	0,28	2,3	3,5	2,4
	31	55	1,0	0,335	0,327	H2305	0,47	1,3	2,1	1,4
30	35	57	1,0	0,220	0,216	H206	0,25	2,6	4,0	2,7
	35	57	1,0	0,260	0,254	H306	0,40	1,6	2,5	1,7
	36	65	1,0	0,387	0,381	H306	0,26	2,5	3,8	2,6
	36	65	1,0	0,500	0,489	H2306	0,44	1,4	2,2	1,5
35	42	65	1,0	0,323	0,317	H207	0,23	2,7	4,2	2,9
- 10	42	65	1,0	0,403	0,396	H307	0,37	1,7	2,6	1,8
40	47	73	1,0	0,417	0,411	H208	0,22	2,9	4,4	3,0
	47 47	81 81	1,5 1,5	0,715 0,925	0,704 0,903	H308 H2308	0,24 0,43	2,6 1,5	4,1 2,3	2,7 1,5
45	52	78	1,0	0,925	0,903	H209	0,43	3,0	4,6	3,1
45	52	78	1,0	0,465	0,439	H309	0,21	2,1	3,2	2,2
	52	91	1,5	0,957	0,942	H309	0,31	2,5	3,2	2,7
	52	91	1,5	1,230	1,200	H2309	0,23	1,5	2,3	1,6
50	57	83	1,0	0,525	0,515	H210	0,42	3,1	4,9	3,3
00	57	83	1,0	0,590	0,577	H310	0,29	2,2	3,4	2,3
	60	100	2,0	1,210	1,190	H310	0.24	2.7	4.1	2,8
55	62	91	1,5	0,705	0,693	H211	0,20	3,2	5,0	3,4
	62	91	1,5	0,810	0,792	H311	0,28	2,3	3,5	2,4
60	67	101	1,5	0,900	0,885	H212	0,19	3,4	5,3	3,6
	67	101	1,5	1,090	1,070	H312	0,28	2,3	3,5	2,4
	72	118	2,0	1,960	1,930	H312	0,23	2,8	4,3	2,9

Double Row Self-Aligning Ball Bearings d = 65 to 150 mm

Dime	Dimensions		Basic Load Rating Dynamic Static		Fatique load	Limiting S		Bearing Do	esignation		
d	D	В	B ₁ ¹⁾	r _s	C _r	C _{or}	limit P _u	Grease	Oil	with Cylindi Bore	rical with Tapered Bore
mm					kN		kN	min ⁻¹			
65	120	23		1,5	31,93	12,3	0,56	5300	6300	1213**	1213K
	120	31		1,5	44,91	16,5	0,75	5300	6300	2213**	2213K
	140	48		2,1	98,88	32,4	1,47	4000	4800	2313**	2313K
70	125	31		1,5	45,22	17,1	0,78	5000	6000	2214**	2214K
	150	51		2,1	112,27	37,6	1,63	3800	4500	2314**	2314K
75	130	25		1,5	40,07	15,5	0,70	4700	5600	1215**	1215K
	130	31		1,5	45,53	17,8	0,80	4700	5600	2215**	2215K
	160	37		2,1	81,68	29,9	1,25	3800	4500	1315**	1315K
00	160	55		2,1	126,69	43,0	1,80	3500	4200	2315**	2315K
80	140	26		2,0	40,99	16,8	0,73	4500	5300	1216**	1216K
0.5	140	33		2,0	50,47	20,0	0,87	4500	5300	2216**	2216K
85	150	28		2,0	50,57	20,3	0,85	4000	4700	1217** 1317**	1217K 1317K
	180	41		3,0	100,63	37,6	1,48	3300	4000	2317**	
00	180	60		3,0	144,20	51,1	2,02	3200	3800 4500	1218**	2317K 1218K
90	160 160	30 40		2,0 2,0	58,61 72,41	23,3 28,7	0,95 1,17	3800 3800	4500	2218**	2218K
	190	64		3,0	157,59	57,3	2,20	3000	3500	2318**	2318K
95	170	32		2,1	65,61	27,1	1,07	3500	4200	1219**	1219K
93	170	43		2,1	85,70	34,1	1,35	3500	4200	2219**	2219K
	200	45	48	3.0	135,96	51,1	1,91	3000	3500	1319**	1319K
	200	67	40	3,0	169,95	64,3	2,41	2800	3300	2319**	2319K
100	180	34		2,1	71,07	29,3	1,13	3300	4000	1220**	1220K
100	180	46		2,1	96,92	40.6	1,56	3300	4000	2220**	2220K
	215	47	52	3,0	147,29	58,4	2,12	2800	3300	1320**	1320K
	215	73	0_	3,0	197,76	77,9	2.82	2700	3200	2320**	2320K
110	200	38		2,1	90,54	38,3	1,40	3000	3500	1222**	1222K
	200	53		2,1	123,60	52,1	1,90	3000	3500	2222**	2222K
	240	50	55	3,0	167,89	70,8	2,43	2700	3200	1322**	1322K
	240	80		3,0	223,51	94,4	3,24	2500	3000	2322**	2322K
120	215	42	45	2,1	119,00	52,1	1,83	2800	3300	1224	
	260	55	62	3,0	196,00	90,9	3,00	2500	3000	1324	
130	230	46	48	3,0	129,78	59,6	2,02	2700	3200	1226**	1226K
140	250	50	54	3,0	163,77	72,2	2,35	2500	3000	1228**	1228K
150	270	54	56	3,0	176,13	85,8	2,69	2400	2800	1230**	1230K
** Be	earings	in th	e new	standa	ard NEW F	ORCE					
1)			.								,
" ſh	e dimer	nsion	B1 ind	ıcates t	ne bearing v	ıdth meası	red over balls	if they protru	ide from the	bearing side	taces

d			ns	Weight Corres-			Factors			
	d _a min	D _a max	r _a max	~	K	ponding Adapter Sleeve	е	Y ₁	Y ₂	Y ₀
mm				kg						
65	72	111	1,5	1.15	1 10	H213	0.17	3,7	5,7	2.0
5	72 72			1,15	1,13	H213 H313	0,17 0,28			3,9
	72 76	111 128	1,5 2,0	1,46 3,28	1,43 3,20	H2313	0,28	2,2 1,6	3,5 2,5	2,3 1,7
70	77	116	1,5	1,52	1,49	H314	0,36	2,4	3,7	2,5
70	81	138	2,0	3,9	3,79	H2314	0,27	1,7	2,6	1,8
75	82	121	1,5	1,36	1,34	H215	0,38	3,6	5,6	3,8
3	82	121	1,5	1,62	1,54	H315	0,18	2,5	3,9	2,6
	86	148	2,0	3,56	3,51	H315	0,23	2,8	4,4	3.0
	86	148	2,0	4,72	4,61	H2315	0,22	1,7	2,6	1,7
30	90	130	2,0	1,67	1,64	H216	0,36	3,9	6,1	4,1
	90	130	2,0	2,01	1,04	H316	0,16	2,5	3,9	2,6
35	95	140	2,0	2,07	2,04	H217	0,25	3,7	5,7	3,9
55	98	166	2,5	4,98	4,91	H317	0,17	2,9	4,5	3.0
	98	166	2,5	6,71	6,55	H2317	0,22	1,7	2,7	1,8
90	100	150	2,0	2,52	2,48	H218	0,37	3,8	5.8	3,9
90	100	150	2,0	3,20	3,13	H318	0,17	2,4	3,6	2,5
	103	176	2,5	7,96	7,77	H2318	0,27	1,7	2,6	1,8
15	103	158	2,0	3,10	3,05	H219	0,38	3,7	5,7	3,9
,,	107	158	2,0	3,95	3,85	H319	0,17	2,4	3,6	2,5
	107	186	2,5	6,69	6,59	H319	0,27	2,8	4,3	2,9
	109	186	2,5	9,21	8,99	H2319	0,23	1.7	2,6	1,8
100	112	168	2,0	3,70	3,64	H220	0,38	3,6	5,6	3,8
100	112	168	2,0	4,72	4,61	H320	0,17	2,4	3,6	2,5
	113	201	2,5	8,30	8,19	H320	0,24	2,7	4,1	2,8
	113	201	2,5	11,70	11.40	H2320	0,38	1.7	2,6	1,7
110	122	188	2,0	5,15	5,07	H222	0,30	3,6	5,6	3,8
110	122	188	2,0	6,84	6,68	H322	0,17	2,3	3,5	2,4
	124	226	2,5	11,80	11,70	H322	0,22	2,8	4,4	3,0
	124	226	2,5	17,30	16,90	H2322	0,22	1.7	2,7	1,8
120	132	203	2,0	6,75	10,50	TIZOZZ	0,19	3,3	5,1	3,4
0	134	246	2,5	15,50			0,24	2,7	4,1	2,8
130	144	216	2,5	8,30	8,10		0,19	3,3	5,0	3,4
140	154	236	2,5	10,90	10,55		0,20	3,1	4,8	3,3
150	164	256	2,5	13,80	13,50		0,19	3,2	5,0	3,4
	101	200	2,0	10,00	10,00		0,10	0,2	0,0	0, 1

Single Row Cylindrical Roller Bearings

These bearings are separable and are produced in several designs.

Design NU has cylindrical rollers guided between guiding ribs of the outer ring, the design N between quiding ribs of the inner ring. Both designs enable mutual bearing rings displacement in both directions.

Design NJ has two guiding ribs on the outer ring and one on the inner ring, which enables to carry the axial forces in one direction.

NUP design has a loose inner rib creating the second guiding rib of the inner ring and this enables the bearing to carry limited axial forces in both directions. Axial guiding in both directions can be achieved by means of angle rings HJ for bearings in NJ design and in one direction in NU design.

Single row cylindrical roller bearings have in comparison with single row ball bearings of the same size higher basic load rating and are suitable for arrangements with high radial load, high rotational speed and when light fitting of both rings is desirable.

Basic dynamic load rating of bearings with internal design E is in average higher by 30% as that one for bearings with basic internal design.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design is in the dimension tables of this publication. Difference from standard design is designated by additional symbols (section 2.2).

Cages

Bearings in standard design have cage according to dimension tables. Material symbol and symbol of the cage design are not indicated by bearings with pressed steel cage. For special arrangements bearings with plastic or brass cages which can be coated with silver are produced. This delivery should be discussed in advance.

Tolerance

Bearings are commonly produced in normal tolerance class PO which is not indicated. Bearings for more demanding arrangements are delivered in tolerance classes P6, P5 and P4.

Bearing Type	Bearings with Pressed Steel Cage	Bearings with Reinforced Solid Plastic Cage	Bearings with Machined Brass or Steel Cage
	Bearing Size		
NU/NUP29	-	-	/800 to /1800
NU10	-	-	80 to 80
NU/NJ/NUP/N2	05 to 28	-	48
NU/NJ/NUP/N2E	09, 15	04 to 24	22 to 40
NU/NJ/NUP22	05 to 07, 10, 11, 13, 14, 19	-	36, 80
NU/NJ/NUP22E	09, 15, 17	40 to 20	22 to 30
NU/NJ/NUP/N3	05 to 24	-	26 to 30
NU/NJ/NUP/N3E	-	04 to 17	18 to 30
NU/NJ/NUP23	07, 12, 13, 15	-	-
NU/NJ/NUP23E	09	04 to 17	07, 08, 10, 14
			18 to 30
NU/NJ/NUP/N4	06 to 12, 14 to 16	-	13, 17 to 24

Limiting deviation values of dimension and running accuracy are shown in tables 10 and 11 and comply with standards ISO 199 and ISO 492.

Radial Clearance

Commonly produced bearings have normal radial clearance which is not indicated. For special arrangements bearings with smaller clearance C2 or greater radial clearance C3, C4 and C5 are delivered. Radial clearance values comply with the standard ISO 5753 and are shown in table 24.

Vibration Level

Commonly produced single row cylindrical roller bearings have normal vibration level checked by the producer. Bearings in tolerance class P5 and P4 have vibration level C6. For special arrangements bearings with reduced vibration level C6 are manufactured.

Bearings with Angle Rings

Angle rings - type HJ10, HJ2, HJ2E, HJ3, HJ3E and HJ4 can be used for bearings in NJ and NU designs. Examples of bearing designation :

Pictures of individual basic designs and combinations are in the dimension tables of the publication.

Bearings without Inner Ring

For arrangements with limited space for bearing mounting, single row cylindrical roller bearings without inner ring designated R NU are delivered. The inner bearing ring raceway is created directly by the hardened and ground journal.

Dimension tolerance on the journal is usually "g6" for normal radial clearance, "f6" for greater radial clearance and "h5" for smaller radial clearance. Ovality and cylindricity deviations of the "raceway" on this journal must not be greater than deviations for tolerance class IT3. Surface roughness for this surface should be $R_a = 0.2$ and for less demanding arrangements $R_a = 0.4$.

Basic load rating C_r and C_{or} values shown in the dimension tables, are valid for bearings R NU if the journal surface hardness will be in the range 59 to 65 HRC. With decreasing hardness value also load rating values C_r decrease. It must be multiplied by the factor f_h from following table. Minimum depth of journal hardening after grinding depends on the cylindrical roller diameter and load magnitude and should be 1 to 3 mm.

Hardness HRC	58	56	54	51	48	45	40	35	30
Factor f _h	0.9	8.0	0.7	0.6	0.5	0.4	0.3	0.25	0.2

Misalignment

Mutual bearing ring misalignment of single row cylindrical roller bearings is very small. Permissible misalignment values are in the table.

Bearing Type	Load small (F _r <0,1C _{or})	great (F _r ≧0,1C _{or})
NU10, NU2, NU3, NU4	2' to 3'	5' to 7'
NU29, NU22, NU23	1' to 3'	3' to 4'
Designs NJ, NUP, N ¹⁾	1' to 2'	3' to 4'
of all dimension series		
1) Smaller values of the number pair are valid for bearings of	of width series 2 and higher	

Radial Equivalent Dynamic Load

$$P_r = F_r$$
 [kN]

Axial Dynamic Load Rating

Bearings with ribs on both rings can carry, besides the radial load, also a limited axial load. Because permissible bearing load in axial direction depends on many factors, which cannot be expressed only by a simple calculation, the following relations have only an informative character.

The axial load in this case is not limited by the material fatigue but by the carrying capacity of the lubrication film on the contact surface between the cylindrical roller face and guiding rib and lubrication conditions and operating temperature and cooling possibilities of the bearing. At common working conditions when the difference of the bearing and environment temperature does not exceed 60°C, by slight heat transfer (0.5mWmm⁻² °C⁻¹), by viscosity relation 1.5 (section 4.2.1) it is possible to calculate maximum permissible axial load with sufficient accuracy from equation:

$$F_{a max} = \frac{0.5 C_{or} \times 10^4}{n (d + D)} - 0.05 F_r$$
 [kN]

- for oil lubrication

$$F_{a max} = \frac{0.35 C_{or} \times 10^4}{n (d + D)} - 0.03 F_r$$
 [kN]

- for grease lubrication

F _{a max} - maximum permissible axial load	[kN]
C _n - radial basic static load rating	[kN]
F, - radial bearing load	[kN]
n' - rotational speed	[min ⁻¹]
d - bearing bore diameter	[mm]
D - bearing outside diameter	[mm]

Values $F_{a \text{ max}}$ calculated according to the above introduced equations are valid under assuming of continuously acting axial force. For intermittent or impact load the permissible axial load can be two or three times greater in comparison with calculated value. For reliable bearing function it is important that ratio $F_a/F_r \leq 0.4$.

Radial Equivalent Static Load

$$P_{or} = F_{r}$$
 [kN]

Single Row Cylindrical Roller Bearings d = 20 to 40 mm

ווווט	ens	ions									Bearing Des		Angle		
d	D	В	r _s min	r _{1s} min	F	Е	d ₂ max	b	b ₁	S ¹⁾	NU	NJ	NUP	N	Ring HJ
mm															
20	47	14.00	1.0	0.6	27.0	40.0	30.0	2	6.75	1.4	NU204	NJ204	NUP204	N204	HJ204
25		15.00		0.6	32.0	45.0		3	7.25	1.5	NU205	NJ205	NUP205	N204 N205	HJ205
23		15.00		0.6	31.5	45.0	34.9		6.00	1.4	NU205E	NJ205E	NUP205E	14203	HJ205E
		15.00		0.6	31.5	46.5	34.9		6.00	1.4	NU205ETNG		NUP205ETNG	N205ETNC	
		18.00		0.6	32.0	40.0	04.0	Ŭ	0.00	1.6	NU2205	NJ2205	NUP2205	NEODE III	
		17.00		1.1	35.0	53.0	39.3	4	8.00	1.4	NU305	NJ305	NUP305	N305	HJ305
	62	17.00		1.1	34.0		38.3		7.00	1.4	NU305EMAS		NUP305EMAS		HJ305E
	-	17.00		1.1	34.0	54.0	38.3		7.00	1.4	NU305ETNG		NUP305ETNG		
	80	21.00	1.5	1.5	38.8					1.4	NU405	NJ405			
30	62	16.00	1.0	0.6	38.5	53.5	42.2	4	8.25	1.5	NU206	NJ206	NUP206	N206	HJ206
	62	16.00	1.0	0.6	37.5	55.5	41.4	4	7.00	1.4	NU206ETNG	NJ206ETNG	NUP206ETNG	N206ETNC	HJ206
	62	20.00	1.0	0.6	38.5					1.6	NU2206	NJ2206	NUP2206		
	72	19.00	1.1	1.1	42.0	62.0	46.6	5	9.50	1.4	NU306	NJ306	NUP306	N306	HJ306
	72	19.00	1.1	1.1	40.5		45.1	5	8.50	1.4	NU306E	NJ306E	NUP306E		HJ3061
	72	19.00	1.1	1.1	40.5	62.5	45.1	5	8.50	1.4	NU306ETNG	NJ306ETNG	NUP306ETNG	N306ETNC	HJ3061
	90	23.00	1.5	1.5	45.0		51.4	7	11.50	1.5	NU406	NJ406	NUP406		HJ406
32	65	21.00	1.0	0.6	38.5					1.6	NU22/32ETN	3			
35	72	17.00	1.1	0.6	43.8	61.8	48.1	4	8.00	1.5	NU207	NJ207	NUP207	N207	HJ207
	72	17.00	1.1	0.6	44.0		48.3	4	7.00	1.4	NU207E	NJ207E	NUP207E		HJ207E
		17.00		0.6	44.0	64.0	48.3	4	7.00	1.4	NU207ETNG		NUP207ETNG	N207ETNO	HJ207
		23.00		0.6	43.8					1.6	NU2207	NJ2207	NUP2207		
		23.00		0.6	44.0					1.6			NUP2207ETN		
		21.00	-	1.1	46.2	68.2	51.2		11.00	1.4	NU307	NJ307	NUP307	N307	HJ307
		21.00		1.1	46.2		51.2	6	9.50	1.4	NU307E	NJ307E	NUP307E		HJ307E
		31.00		1.1	46.2					2.7	NU2307EMAS		NJ2307EMAS		
		25.00		1.5	53.0	83.0	59.9		13.00	1.5	NU407	NJ407	NUP407	N407	HJ407
40		18.00		1.1	50.0	70.0	54.6		9.00	1.5	NU208	NJ208	NUP208	N208	HJ208
		18.00		1.1	49.5		54.1	5	8.50	1.4	NU208E	NJ208E	NUP208E		HJ208
		23.00		1.1	50.0					1.6	NU2208	NJ2208	NUP2208		
		30.16		1.5	49.3			_		3	NU5208M				
		23.00		1.5	53.5	77.5	59.0		12.50	1.4	NU308	NJ308	NUP308	N308	HJ308
		23.00		1.5	52.0	00.0	57.7		11.00	1.4	NU308E	NJ308E	NUP308E	NOOGETNIC	HJ308I
		23.00		1.5	52.0	80.0	57.7	/	11.00	1.4	NU308ETNG		NUP308ETNG		
		33.00		1.5	52.0	00.0	05.0	^	40.00	2.9	NU2308EMAS		NJ2308EMAS		
	110	27.00	2.0	2.0	58.0	92.0	65.8	8	13.00	1.5	NU408	NJ408	NUP408	N408	HJ408
1) Pa	>rmi	ssible	avial	displa	ceme	nt out c	of cen	tral r	osition						
			23				0011		2 3011						

P

Basic Loa	d Rating	Fatique load	Limiting S for Lubrica		Abu	ıtmen	t and	Fille	et Dir	mensi	ions				Weight	
Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	d	d _a	d _a max	d _b min	d _c	d _d		D _b min	r _a max	r _b max	[~] Bearing	Ang Ring
kN		kN	min ⁻¹		mm										kg	
13.9	10.2	1.24	14000	17000	20	25	25.5	29	32	39	42	42	1.0	0.6	0.11	0.0
15.8	12.6	1.54	12600	15000	25	30	30.5		37	43	47	47	1.0	0.6	0.13	0.0
29.3	25.6	3.12	12600	15000		30	30.0		37	-	47	-	1.0	0.6	0.13	0.0
29.3	25.6	3.12	12600	15000		30	30.0		37	44	47	47	1.0	0.6	0.13	0.0
22.4	19.6	2.39	12600	15000		30	30.5		37	-	47	-	1.0	0.6	0.16	
27.6	21.5	2.62	10000	12000		31	33.0		40	51	55	55	1.0	1.0	0.24	0.0
43.0	36.2	4.41	10000	12000		31	32.0		40	-	55	-	1.0	1.0	0.26	0.0
43.0	36.2	4.41	10000	12000		31	32.0		39	52	55	55	1.0	1.0	0.24	0.0
43.8	34.1	4.16	8400	10000		32	38.0		40	-	73	-	1.0	1.0	0.57	0.0
21.5	17.8	2.17	10600	12600	30	35	37.0		44	52	57	56	1.0	0.6	0.20	0.0
39.1	35.5	4.33	10600	12600	00	35	37.0		43	54	57	57	1.0	0.6	0.20	0.0
31.6	29.3	3.57	10600	12600		35	37.0		44	-	57	-	1.0	0.6	0.26	0.0
36.2	31.0	3.78	8900	10600		36	39.0		48	60	65	64	1.0	1.0	0.26	0.0
53.1	46.4	5.66	8400	10000		36	37.5		47	-	65	-	1.0	1.0	0.36	0.0
53.1	46.4	5.66	8400	10000		36	37.5		47	60	65	64	1.0	1.0	0.36	0.0
59.6	48.2	5.88	7100	8400		39	41.0		53	-	80	-	1.5	1.5	0.75	0.0
51.1	50.1	6.11	10000	12000	32	35	37.0		43	-	60		1.0	1.0	0.73	0.0
31.6	27.1	3.30	9400	11000	35	42	42.0		50	60	65	64	1.0	0.6	0.29	0.0
51.0	48.2	5.88	8900	10600	33	42	42.0		50	-	65	-	1.0	0.6	0.29	0.0
51.1	48.2	5.88	8900	10600		42	42.0		50	62	65	65	1.0	0.6	0.29	0.0
48.2	47.3	5.77	9400	11000		42	42.0		50	-	65	-	1.0	0.6	0.40	0.0
64.3	64.3	7.84	8900	10600		42	42.0		50	-	65	-	1.0	0.6	0.40	
43.0	36.2	4.41	7900	9400		42	44.0		53	66	71	71	1.5	1.0	0.39	0.0
66.8 92.6	61.9	7.55	7500	8900		42 42	44.0 44.0		53	-	71 71	-	1.5	1.0	0.47	0.0
	92.6	11.29	7100	8400					53	-		-	1.5	1.0	0.75	_
75.0	64.3	7.84	6300	7500	10	44	52.0		62	81	90	86	1.5	1.5	1.00	0.1
42.2	37.6	4.59	7900	9400	40	47	48.0		56	68	73	72	1.0	1.0	0.37	0.0
54.1	50.1	6.11	7900	9400		47	47.0		56	-	73	-	1.0	1.0	0.38	0.0
57.3	56.2	6.85	7900	9400		47	48.0		56	-	73	-	1.0	1.0	0.74	
57.0	98.1	11.96	7500	8900		48	-	51.		-	72	-	1.5	1.5	0.74	
55.2	48.2	5.88	7100	8400		47	51.0		61	75	81	81	1.5	1.5	0.66	0.0
84.1	77.9	9.50	6700	7900		47	50.0		60	-	81	-	1.5	1.5	0.67	0.0
84.1	77.9	9.50	6700	7900		47	50.0		60	77	81	81	1.5	1.5	0.83	0.0
119.0	123.0	15.00	6300	7500		47	50.0		60	-	81	-	1.5	1.5	1.00	
92.6	79.4	9.68	5600	6700		50	55.0	60	68	90	97	95	2.0	2.0	1.30	0.1

Single Row Cylindrical Roller Bearings d = 45 to 60 mm

Dim	nensi	ons									Bearing Des		Angle		
d	D	В	r _s min	r _{1s} min	F	Е	d ₂ max	b	b ₁	S ¹⁾	NU	NJ	NUP	N	Ring HJ
mm	1														
45	85	19.00	1.1	1.1	55.00	75.0	59.6	5.0	9.50	1.5	NU209	NJ209	NUP209	N209	HJ209
	85	19.00	1.1	1.1	54.50		59.1	5.0	8.50	1.4	NU209E	NJ209E	NUP209E		HJ209E
	85	19.00	1.1	1.1	54.50	76.5	59.1	5.0	8.50	1.4	NU209ETNG	NJ209ETNG	NUP209ETNG	N209ETNO	HJ209E
	85	23.00	1.1	1.1	54.50					1.6	NU2209E	NJ2209E	NUP2209E		
	85	23.00	1.1	1.1	54.50					1.6	NU2209ETNG	NJ2209ETNG	NUP2209ETN	G	
	85	30.16	1.0	1.5	55.52					4.0	NU5209M				
	100	25.00	1.5	1.5	58.50	86.5	65.0	7.0	12.50	1.4	NU309	NJ309	NUP309	N309	HJ309
	100	25.00	1.5	1.5	58.50		64.6	7.0	11.50	1.4	NU309E	NJ309E	NUP309E		HJ309E
	100	36.00	1.5	1.5	58.50					2.9	NU2309E	NJ2309E	NUP2309E		
	120	29.00			64.50	100.5			13.50		NU409	NJ409	NUP409	N409	HJ409
50	90	20.00		1.1	59.50		64.6	5.0	9.00	1.6	NU210E	NJ210E	NUP210E		HJ210E
	90	23.00		1.1	60.40					1.6	NU2210	NJ2210	NUP2210		
	90	23.00		1.1	59.50					1.6	NU2210E	NJ2210E	NUP2210E		
	90	30.16		1.5	60.46					4.5	NU5210M				
	110	27.00			65.00		71.9		14.00		NU310	NJ310	NUP310	N310	HJ310
	110	27.00			65.00	97.0	71.4	8.0	13.00		NU310ETNG		NUP310ETNG	N310ETNO	HJ310E
	110	40.00			65.00					3.0	NU2310	NJ2310	NUP2310	_	
	110	40.00			65.00					3.0		SNJ2310EMAS			
	130	31.00		2.1	70.80	110.8			14.50		NU410	NJ410	NUP410	N410	HJ410
55	100	21.00		1.1	66.50	88.5	71.5		11.00		NU211	NJ211	NUP211	N211	HJ211
	100	21.00		1.1	66.00		71.0	6.0	9.50		NU211E	NJ211E	NUP211E		HJ211E
	100	25.00			66.50					1.6	NU2211	NJ2211	NUP2211		
	100 120	33.34 29.00			66.90 70.50	104.5	70 /	0.0	15.00	4.5	NU5211M NU311	NJ311	NUP311	N311	HJ311
	120	29.00			70.50	104.5	77.7		14.00		NU311E	NJ311E	NUP311E	NSII	HJ311E
	140	33.00		2.0	77.20	1170	86.4			-	NU311E NU411	NJ411	NUP411	N411	HJ411
60	110	22.00		1.5	73.50		79.0		16.60		NU212	NJ212	NUP212	N212	HJ212
00	110	28.00		1.5	73.50	31.3	79.0	0.0	11.00	1.6	NU2212	NJ2212	NUP2212	14212	110212
	110	36.50			72.38					4.5	NU5212M	1102212	11052212		
	130	31.00		2.1	77.00	113.0	85.3	9.0	15.50	-	NU312	NJ312	NUP312	N312	HJ312
	130	46.00		2.1	77.00	110.0	55.5	0.0	.0.00	4.5	NU2312	NJ2312	NUP2312		
	150	35.00		2.1	83.00	127.0	93 1	10.0	16.50	-	NU412	NJ412	NUP412	N412	HJ412
	100	00.00			00.00	127.0	00.1	10.0	10.00	, 2.0	110-112	110-712	1101 412		110-712
1) P	ermis	sible a	ixial c	displa	cemen	t out c	f cent	ral po	sitior	1					

P

Basic Loa	d Rating	Fatique load	Limiting Sp for Lubrica		Abu	ıtme	nt an	ıd Fil	llet D	imens	sions				Weight	
Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	d	d _a	d _a max	d _b	d _c	d _d max	D _a	D _b	r _a max	r _b max	Bearing	Ang Ring
kN		kN	min ⁻¹		mm	1									kg	
43.8	41.1	5.01	7500	8900	45	52	53	57	61	74	78	78	1.0	1.0	0.43	0.05
61.9	60.7	7.40	7500	8900	40	52	53	57	61	-	78	-	1.0	1.0	0.45	0.05
61.9	60.7	7.40	7500	8900		52	53	57	61	74	78	78	1.0	1.0	0.43	0.05
76.4	79.4	9.68	7100	8400		52	53	57	61	-	78	-	1.0	1.0	0.55	0.00
76.4	79.4	9.68	7100	8400		53	53	57	61	_	76	_	1.5	1.0	0.52	
89.1	117.7	14.35	6700	7900		53	-	57	-	_	76	-	1.5	1.0	0.80	
70.8	61.9	7.55	6300	7500		52	56	60	66	84	91	90	1.5	1.5	0.87	0.10
102.0	98.0	11.95	6000	7100		52	56	60	66	-	91	-	1.5	1.5	0.89	0.10
139.0	147.0	17.93	5600	6700		52	56	60	66	_	91	-	1.5	1.5	1.36	0.10
104.0	90.9	11.09	5300	6300		55	62.7		75	99	107	103	2.0	2.0	1.65	0.18
64.3	65.6	8.00	6700	7900	50	57	57	61	66	-	83	-	1.0	1.0	0.49	0.06
63.1	66.8	8.15	7100	8400	00	57	58	62	66	-	83	-	1.0	1.0	0.58	0.00
84.1	90.9	11.09	6700	7900		57	57	61	66	-	83	-	1.0	1.0	0.59	
92.6	128.0	15.61	6300	7500		58	-	62	-	-	81	-	1.5	1.0	0.88	
87.4	79.4	9.68	5600	6700		60	63	67	74	93	100	99	2.0	2.0	1.15	0.15
117.0	114.0	13.90	5300	6300		60	63	67	74	95	100	100	2.0	2.0	1.13	0.14
123.0	126.0	15.37	5600	6700		60	63	67	74	-	100	100	2.0	2.0	0.17	0.17
168.0	178.0	21.71	5000	6000		60	63	67	74	_	100	-	2.0	2.0	1.83	
139.0	114.0	13.90	4700	5600		63	68	73	82	109	116	114	2.0	2.0	2.00	0.23
56.2	56.2	6.85	6300	7500	55	62	65	68	73	86	91	91	1.5	1.0	0.64	0.08
85.8	90.9	11.09	6300	7500	00	62	64.5		73	-	91	-	1.5	1.0	0.66	0.08
76.4	82.5	10.06	6300	7500		62	65	68	73	-	91	-	1.5	1.0	0.78	0.0
119.0	171.0	20.85	5600	6700		64	-	69	-	_	90	_	2.0	1.5	1.20	
108.0	100.0	12.20	5300	6300		65	67	72	80	102	110	108	2.0	2.0	1.45	0.19
136.0	128.0	15.61	4700	5600		65	67	72	80	102	110	100	2.0	2.0	1.38	0.18
139.0	128.0	15.61	4500	5300		68	71	79	88	115	126	120	2.0	2.0	2.50	0.3
66.8	68.1	8.30	5600	6700	60	67	71	75	80	95	101	101	1.5	1.5	0.82	0.11
98.1	112.0	13.66	5600	6700	00	69	69.5		79	-	101	-	1.5	1.5	1.05	0.11
150.0	211.0	25.73	5300	6300		69	-	74	-		99	_	2.0	1.5	1.59	
121.0	114.0	13.90	4700	5600		72	75	79	87	110	118	117	2.0	2.0	1.85	0.2
168.0	174.0	21.22	4700	5600		72	75	79	87	110	118	117	2.0	2.0	2.70	0.2
168.0	158.0	18.99	4200	5000		73	77	85	95	124		130	2.0	2.0	3.00	0.3
100.0	150.0	10.55	4200	3000		75		00	33	124	100	100	2.0	2.0	3.00	0.0

Single Row Cylindrical Roller Bearings d = 65 to 80 mm

Din	nensions	3									Bearing De		Angle		
d	D B	r	1	r _{1s}	F	Е	d_2	b	b,	S ¹⁾	NU	NJ	NUP	N	Ring HJ
				min			max		-1						
mm	1														
65	120 23.0			1.5	79.60	105.6	85.6	6.0	11.00	1.6	NU213	NJ213	NUP213	N213	HJ213
	120 31.0			1.5	79.60					1.6	NU2213	NJ2213	NUP2213		
	120 38.1			1.7	80.42					4.5	NU5213M				
	140 33.0				83.50	121.5			17.00	1.5	NU313	NJ313	NUP313	N313	HJ313
	140 33.0			2.1	82.50		90.7	10.0	15.50	1.5	NU313E	NJ313E	NUP313E		HJ313E
	140 48.0			2.1	83.50					4.5	NU2313	NJ2313	NUP2313		
	160 37.0			2.1	89.30		99.9		18.00	2.0	NU413MAS	NJ413MAS	NUP413MAS		HJ413
70	125 24.0			1.5	84.50	110.5	90.5	7.0	12.50	1.6	NU214	NJ214	NUP214	N214	HJ214
	125 31.0			1.5	84.50					1.6	NU2214	NJ2214	NUP2214		
	125 39.6				84.84					4.5	NU5214M				
	150 35.0			2.1	90.00	130.0	99.2	10.0	17.50	1.5	NU314	NJ314	NUP314	N314	HJ314
	150 51.0			2.1	90.00					4.1	NU2314	NJ2314	NUP2314		
	150 51.0			2.1	89.00					4.1		SNJ2314EMAS		-	
	180 42.0				100.00					2.0	NU414	NJ414	NUP414	N414	HJ414
75	130 25.0			1.5	88.50	116.5	94.9	7.0	12.50	1.6	NU215	NJ215	NUP215	N215	HJ215
	130 25.0			1.5	88.50		94.6	7.0	11.00	1.6	NU215E	NJ215E	NUP215E		HJ215E
	130 31.0			1.5	88.50					2.1	NU2215E	NJ2215E	NUP2215E		
	130 41.2				89.01					4.5	NU5215M				
	160 37.0	-		2.1	95.50	139.5	105.6	11.0	18.50	1.5	NU315	NJ315	NUP315	N315	HJ315
	160 55.0			2.1	95.50					4.5	NU2315	NJ2315	NUP2315		
	190 45.0				104.50	160.5	117.0	13.0	21.50	2.0	NU415	NJ415	NUP415	N415	HJ415
80	125 22.0			1.0	91.50					1.2	NU1016				
	140 26.0			2.0	95.30	125.3	102.2	8.0	13.50	2.0	NU216	NJ216	NUP216	N216	HJ216
	140 33.0				95.30					2.5	NU2216	NJ2216	NUP2216		
	140 33.0				95.30					2.5	NU2216E	NJ2216E	NUP2216E		
	140 44.4			2.1	95.28					5.0	NU5216M				
	170 39.0				103.00				19.50	1.5	NU316	NJ316	NUP316	N316	HJ316
	200 48.0	0 3.	.0 3	3.0	110.00	170.0	123.8	13.0	22.00	2.0	NU416M	NJ416M	NUP416M	N416M	HJ416
							,								
1) P	ermissib	le axi	ial c	displa	aceme	nt out	of cen	tral p	osition						

Basic Load	d Rating	Fatique load	Limiting S for Lubrica		Abı	utme	nt a	nd Fi	llet D	imens	sions				Weight	
Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	d	d _a	d _a min	d _b max	d _c	d _d min	D _a	D _b max	r _a min	r _b max	Bearing max	Angl Ring
kN		kN	min ⁻¹		mm	1									kg	
70.4	00	40.00	5000	0000	0.5	70		0.4	07	400		440			4.05	0.40
79.4	83	10.06	5300	6300	65	72	77	81	87	103	111	110	1.5	1.5	1.05	0.13
117.0 139.0	136 196	16.59 23.90	5300 4700	6300 5600		72 77	77	81 83	87	-	111 108	-	1.5	1.5	1.45 1.88	
	128	15.49	4500	5300		76	- 78	85	94	119	128	126	1.5	2.0	2.25	0.29
131.0 181.0		21.55		5000		76	77	84	93	119	128	126	2.0	2.0	2.25	
	178		4200			76	78	-	93	-	-		-	-		0.27
192.0 181.0	203 174	24.57 20.48	4500 3800	5300 4500		78	83	85 91	101	-	128 146	-	2.0	2.0	3.25 3.60	0.43
					70											
79.4 117.0	83 139	10.06	5600	6700	70	77 77	82 82	86 86	92 92	108	116	115	1.5	1.5	1.15 1.50	0.16
178.0	261	16.95 31.83	5000 4700	6000 5600		81.	-	87	92	-	116 112	-	2.0	1.5	2.22	
147.0						81	85			127		135		2.0	2.75	0.34
	144	17.07	4200	5000		-			101		138		2.0			0.34
215.0	233	27.61	4200	5000		81	85		101	-	138	-	2.0	2.0	5.25	
282.0	310	36.74	3800	4500		81	84	91		- 440	138	-	2.0	2.0	4.21	0.04
224.0	215	24.52	3300	4000		85	93	102	114	149	164	156	2.5	2.5	5.25	0.61
96.2	96	11.65	4700	5600	75	82	85	90	96	114	121	120	1.5	1.5	1.25	0.17
131.0	147	17.79	4500	5300		82	85	90	96	-	121	-	1.5	1.5	1.30	0.16
162.0	196	23.73	4500	5300		82	85	90	96	-	121	-	1.5	1.5	1.65	
196.0	299	36.19	4500	5300		85.		91	-	-	117	-	2.0	1.5	2.41	
178.0	178	20.68	3800	4500		86	93		107	137	148	145	2.0	2.0	3.25	0.40
266.0	287	33.35	3800	4500		86	93		107	-	148	-	2.0	2.0	4.85	
261.0	251	28.13	3200	3800		90	98	107	119	158	174	164	2.5	2.5	6.25	0.80
66.8	76	9.25	5000	6000	80	85	90	94	-	-	118	-	1.0	1.0	0.99	
106.0	114	13.51	4500	5300		90	92		104	125	130	130	2.0	2.0	1.50	0.21
147.0	178	21.10	4500	5300		90	92		104	-	130	-	2.0	2.0	1.95	
196.0	246	29.15	4200	5000		90	92		104	-	130	-	2.0	2.0	2.05	
185.0	282	33.42	4200	5000		91.		98	-	-	126	-	2.0	2.0	2.91	
192.0	192	21.90	3500	4200	80	99	97		116	144	158	153	2.0	2.0	3.90	0.49
299.0	293	32.30	3000	3500		95	105	112	125	167	184	174	2.5	2.5	7.30	0.80

Single Row Cylindrical Roller Bearings d = 85 to 105 mm

Dim	nensi	ions									Bearing De	signation			Angle
d	D	В	r _s	r _{1s}	F	Е	d ₂	b	b,	S ¹⁾	NU	NJ	NUP	N	Ring HJ
				min			max								
mm	1														
85	150	28.00	20	2.0	101.80	133.8	109.2	8.0	14 00	2.0	NU217	NJ217	NUP217	N217	HJ217
00		36.00			100.50	100.0		0.0		2.0	NU2217E	NJ2217E	NUP2217E		
		49.21		2.1	102.00					5.5	NU5217M				
	180	41.00	3.0	3.0	108.00	156.0	119.0	12.0	20.50	2.0	NU317	NJ317	NUP317	N317	HJ317
	210	52.00	4.0	4.0	113.00		127.7	14.0	24.00	2.5	NU417	NJ417	NUP417		HJ417
90	160	30.00	2.0	2.0	107.00	143.0	115.3	9.0	15.00	2.0	NU218	NJ218	NUP218	N218	HJ218
	160	52.40	2.1	3.0	107.22					6.0	NU5218M				
	190	43.00	3.0	3.0	115.00	165.0	126.5	12.0	21.00	2.0	NU318	NJ318	NUP318	N318	HJ318
	190	43.00	3.0	3.0	113.50		124.2	12.0	18.50	2.0	NU318E	NJ318E	NUP318E		HJ318E
	225	54.00	4.0	4.0	123.50		139.1	14.0	24.00	2.5	NU418	NJ418	NUP418		HJ418
	225	54.00	4.0	4.0	123.50		139.1	14.0	24.00	2.5	NU418MAS	NJ418MAS	NUP418MAS		HJ418
95	170	32.00	2.1	2.1	113.50	151.5	122.2	9.0	15.50	2.0	NU219	NJ219	NUP219	N219	HJ219
	170	43.00	2.1	2.1	113.50					3.0	NU2219	NJ2219	NUP2219		
	170	55.56	2.5	3.0	113.52					6.0	NU5219M				
	200	45.00	3.0	3.0	121.50	173.5				2.0	NU319	NJ319	NUP319	N319	
	200 -	45.00	3.0	3.0	121.50					1.9	NU319EM	NJ319EM	NUP319EM		
		55.00		4.0	133.50					2.5	NU419M	NJ419M	NUP419M		
100	180	34.00	2.1	2.1	120.00	160.0	129.2	10.0	17.00	2.0	NU220	NJ220	NUP220	N220	HJ220
	180	46.00	2.1	2.1	120.00					3.0	NU2220	NJ2220	NUP2220		
		60.32		2.1	121.01					7.0	NU5220M				
	215	47.00	3.0	3.0	129.50	185.5	142.4	13.0	22.50	2.0	NU320	NJ320	NUP320	N320	HJ320
		73.00		3.0	127.50					4.9	NU2320EMA		NJ2320EMAS	NUP2320E	_
		58.00			139.00				27.00	2.5	NU420	NJ420	NUP420		HJ420
105		36.00		2.1	126.80	168.8	136.5	10.0	17.50	2.0	NU221	NJ221	NUP221	N221	HJ221
		65.10		2.1	126.52					7.0	NU5221M				
		49.00		3.0	135.00	195.0				4.5	NU321	NJ321	NUP321	N321	HJ321
	260	60.00	4.0	4.0	144.50		162.0	16.0	27.00	2.5	NU421	NJ421	NUP421		HJ421
1) 5		-16-1		all:											
" P	ermis	sidie	axıal	aisp	laceme	nt out	ot cen	iral p	osition						

P

Basic Load	peed ation with	Abutment and Fillet Dimensions							Weight ~							
Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	d	d _a	d _a min	d _b max	d _c	d _d min	D _a max	D _b max	r _a min	r _b max	Bearing max	Angle Ring
kN		kN	min ⁻¹		mm	1									kg	
121.0	131	15.22	4200	5000	85	95	99	104	111	131	140	138	2.0	2.0	1.90	0.25
220.0	261	30.33	3800	4500		95	98		110	-	140		2.0	2.0	2.52	-
211.0	316	36.72	3800	4500		98	-	105	-	-	135	-	2.0	2.0	3.69	
215.0	215	24.10	3300	4000		98	103		121	174	166	162	2.5	2.5	4.50	0.57
362.0	362	39.29	3000	3500		105	108	115	129	-	190	-	3.0	3.0	8.70	0.89
147.0	158	18.02	4000	4700	90	100	105	109	117	140	150	147	2.0	2.0	2.30	0.31
237.0	355	40.49	3500	4200		103	-	110	-	-	144	-	2.5	2.0	4.48	
233.0	242	26.68	3200	3800		103	111	117	128	162	176	172	2.5	2.5	5.40	0.65
316.0	329	36.27	3000	3500		103	110	116	127	-	176	-	2.5	2.5	5.50	0.60
391.0	406	43.20	2700	3200		110	117	125	140	-	205	-	3.0	3.0	11.70	1.05
391.0	406	43.20	2700	3200		110	117	125	140	-	205	-	3.0	3.0	11.70	1.05
162.0	181	20.29	3800	4500	95	107	111	116	124	149	158	155	2.0	2.0	2.80	0.35
233.0	282	31.61	3800	4500		107	111	116	124	-	158	-	2.0	2.0	3.85	
335.0	511	57.27	3300	4000		110	-	117	-	-	153	-	2.5	2.0	5.65	
256.0	266	28.87	3200	3800		109	119	124	135	170	186	178	2.5	2.5	6.20	
329.0	362	39.29	2800	3300			119	124	135	-	186	-	2.5	2.5	6.50	
430.0	447	46.70	2500	3000		115	125	136	151	-	220	-	3.0	3.0	13.50	
178.0	203	22.38	3500	4200	100	112	117	122	131	157	168	165	2.0	2.0	3.40	0.45
261.0	322	40.53	3500	4200		112		122	131	-	168	-	2.0	2.0	4.65	
304.0	473	59.54	3200	3800		116.	5 -	124	-	-	162	-	2.0	2.0	6.49	
299.0	310	36.99	2800	3300		113	125	132	145	182	201	190	2.0	2.0	7.70	0.91
596.0	694	82.82	2500	3000		113	123	130	144	-	201	-	2.5	2.5	12.50	
473.0	501	57.14	2400	2800		120	130	141	158	-	230	-	3.0	3.0	14.00	1.55
200.0	224	24.31	3300	4000	105	117	122	129	138	166	178	175	2.0	2.0	4.00	0.51
362.0	573	62.19	3000	3500		121.	5 -	130	-	-	171	-	2.0	2.0	7.94	
341.0	362	37.99	2700	3200		119	132	137	150	192	211	199	2.5	2.5	8.75	1.00
531.0	562	57.22	2200	2700		125	135	147	164	-	240	-	3.0	3.0	19.00	1.65

Single Row Cylindrical Roller Bearings d = 110 to 150 mm

Dim	nensior	าร									Bearing De	esignation			Angle Ring
d	D B		r _s	r _{is}	F	Е	d,	b	b,	S ¹⁾	NU	NJ	NUP	N	HJ
			min	mir	1		max								
mm															
110	200 38	.00	2.1	2.1	132.50	178.5	143.1	11.0	18.50	2.5	NU222	NJ222	NUP222	N222	HJ222
					132.50					5.0	NU2222	NJ2222	NUP2222		
					132.95					7.0	NU5222M				
					143.00	207.0	157.5	14.0	23.00	2.7	NU322	NJ322	NUP322	N322	HJ322
					143.00					2.9	NU322E	NJ322E	NUP322E		
					155.00		173.4	17.0	29.50	2.7	NU422	NJ422	NUP422		HJ422
120					135.00					2.0	NU1024				
	215 40	.00	2.1	2.1	143.50	191.5	154.5	11.0	19.00	2.5	NU224	NJ224	NUP224	N224	HJ224
	215 58	.00	2.1	2.1	143.50					5.4	NU2224	NJ2224	NUP2224		
	215 76	.20	2.1	2.1	145.14					7.0	NU5224M				
	260 55	.00	3.0	3.0	154.00		170.5	14.0	23.50	2.7	NU324	NJ324	NUP324		HJ324
	260 86	.00	3.0	3.0	154.00					6.4	NU2324EMA	s	NJ2324EMAS	NUP2324	EMAS
	310 72	.00	5.0	6.0	170.00		188.0	17.0	30.50	2.7	NU424	NJ424	NUP424		HJ424
130	200 33	.00	2.0	1.1	148.00					2.0	NU1026				
	230 40	.00	3.0	3.0	156.00	204.0	167.0	11.0	19.00	2.5	NU226	NJ226	NUP226	N226	HJ226
	230 79	.38	4.0	4.0	155.00					8.0	NU5226M				
	280 58	.00	4.0	4.0	167.00		182.3	14.0	23.00	2.9	NU326E	NJ326E	NUP326E		HJ326E
140	250 42	.00	3.0	3.0	169.00	221.0	181.0	11.0	19.00	2.5	NU228	NJ228	NUP228	N228	HJ228
	250 82	.55	4.0	4.0	168.46					10.0	NU5228M				
	300 62	.00	4.0	4.0	180.00		198.4	15.0	26.00	2.7	NU328	NJ328	NUP328		HJ328
150	225 35	.00	2.1	1.5	169.50					2.0	NU1030				
	270 45	.00	3.0	3.0	182.00		194.7	12.0	20.50	2.4	NU230	NJ230	NUP230		HJ230
	270 45	.00	3.0	3.0	182.00		193.7	12.0	19.50	2.4	NU230E	NJ230E	NUP230E		HJ230E
	270 88	.90	2.3	2.3	181.54					10.0	NU5230M				
	320 65	.00	4.0	4.0	193.00		212.3	15.0	26.50	2.7	NU330	NJ330	NUP330		HJ330
4) -							,								
" P	ermissi	ble	axial	disp	laceme	nt out o	of cen	tral p	osition						

P

Basic Load	d Rating	Fatique load	Limiting Sport For Lubrica		Abu	ıtme	nt ar	nd Fil	llet Di	imens	ions				Weight	
Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	d	d _a	d _a	d _b max	d _c	d _d	D _a	D _b max	r _a min	r _b max	Bearing max	Angl Ring
kN		kN	min ⁻¹		mm										kg	
237.0	271	28.98	3200	3800	110	122			145	175	188		2.0	2.0	4.65	0.62
341.0	422	45.12	3200	3800		122			145	-	188	-	2.0	2.0	6.95	
464.0	736	78.70	3000	3500		128	-	137	-	-	180	-	3.0	2.0	10.00	4 47
391.0	414	42.68	2500	3000		124			160	204	226		2.5	2.5	10.50	1.17
447.0	492	50.73	2400	2800			135		160	-	226	-	2.5	2.5	11.00	0.40
584.0	631	62.98	2100	2500	400	130			175	-	260 171	-	3.0	3.0	20.00	2.16
131.0	168	18.14	3300	4000	120			138	-	-		-	2.0	1.0	2.45	
261.0	299	31.24	3000	3500		132			157	188		196	2.0	2.0	5.65	0.72
369.0	473 794	49.41	3000	3500		140	138	146	157	-	203 194	-	2.0	2.0	8.55	
482.0		82.95	2700	3200			- 14E			-		-	2.0	2.5	11.80	1 40
447.0	473	47.58	2400	2800		134			172	-	246	-	2.5	-	13.00	1.40
810.0	981	98.68	2100	2500		134			172	-	246	-	2.5	2.5	24.50	0.00
736.0	810	78.51	1900	2200	400			172		-	286	-	4.0	4.0	28.00	2.60
162.0	203	21.30	3200	3800	130	138	143	151	-	-	191	-	2.0	1.0	3.75	0.04
271.0	322	32.92	2700	3200			150		169	201		208	2.5	2.5	6.50	0.84
511.0	841	85.98	2500	3000		149	-	159	-	-	207	-	3.0	2.0	13.80	4.05
619.0	694	68.24	2000	2400	440		155		186	-	262	-	3.0	3.0	17.00	1.65
310.0	369	36.83	2500	3000	140	154	160		182	218		255	2.5	2.5	8.25	1.00
596.0	981	97.91	2200	2700		162	-	173	-	-	225	-	3.0	3.0	17.10	
619.0	708	68.15	2000	2400	450	158			198	-	282	-	3.0	3.0	20.00	2.05
192.0	251	25.35	2700	3200	150	159		173	-	-	213	-	2.0	1.5	4.85	4.05
369.0	455	44.42	2200	2700			170		196	-	256	-	2.5	2.5	10.50	1.35
447.0	552	53.88	2200	2700			170		196	-	256	-	2.5	2.5	11.00	1.30
736.0	1260	123.00	2000	2400		174	-	187	-	-	243	-	5.0	2.0	22.90	0.07
681.0	779	73.52	1900	2200		168	185	195	213	-	302	-	3.0	3.0	27.00	2.37

Single Row Cylindrical Roller Bearings d = 160 to 1180 mm

Dim	Dimensions									Bearing Designation				Angle
d	D	В	r.	r,	F	d ₂	b	b,	S ¹⁾	NU	NJ	NUP	N	Ring HJ
			r _s min	min		max								
mm														
160	290	48.00	3.0	3.0	195.000	207.4	12.0	20.0	2.50	NU232M	NJ232M	NUP232M		HJ232
	290	98.42	2.5	6.3	193.634				10.00	NU5232M				
170	260	42.00	2.1	2.1	193.000				3.00	NU1034				
	310	52.00	4.0	4.0	207.000	228.8	12.0	20.0	2.90	NU234M	NJ234M	NUP234M		HJ234
	310	104.77	3.2		205.483				10.00	NU5234M				
180	280	46.00	2.1	2.1	205.000				3.60	NU1036				
	320	52.00	4.0	4.0	217.000			20.0		NU236M	NJ236M	NUP236M		HJ236
	320	86.00	4.0	4.0		230.5	12.0	29.0		NU2236M	NJ2236M	NUP2236M		HJ2236
200	310	51.00	2.1	2.1	229.000				4.20	NU1040				
	360	58.00	4.0		243.000	258.2	14.0	23.0		NU240E	NJ240E	NUP240E		HJ240E
220	340	56.00	3.0	3.0	250.000				4.10	NU1044				
240	360	56.00	3.0		270.000				4.10	NU1048				
	440	72.00	5.0	5.0					4.00	NU248	NJ248			
	440	72.00	5.0		295.000	315.0	16.0	25.9		NUJ248	NH248			HJ248
260	400	65.00	4.0	4.0	296.000				2.00	NU1052		NUP1052		
	480	130.00	5.0		320.000				4.30	NU2252				
280	420	65.00	4.0	4.0	316.000				5.00	NU1056	NIMOCO			
300	460	74.00	5.0	5.0		0570	40.0	00.0	4.5 0	NU1060	NJ1060			11.14000
320	460 480	74.00 74.00	5.0 4.0	5.0 4.0	340.000 360.000	357.6	19.0	36.0	4.50 5.00	NUJ1060 NU1064	NH1060			HJ1060
360	540	82.00	6.0	6.0	480.000				5.00	NU1004 NU1072				
360	540	82.00	6.0		480.000	422 N	21.0	20.5		NUJ1072	NH1072			HJ1072
380	560	82.00	5.0		425.000	423.0	21.0	33.3	6.00	NU1076	NITIO72			1101072
400	600	90.00	5.0	5.0	450.000	470.0	10.6	12.6		NU1080	NUJ1080			HJ1080
400	600	148.00	5.0		450.000	470.0	13.0	42.0	5.00	NU3080	1403 1000			1101000
	720	185.00	6.0		480.000				16.00	NU2280				
600	800	118.00	5.0	5.0					12.00	NU29/600		NUP29/600		
850	1120	155.00	8.0	8.0	925.000				15.00	NU29/850		NUP29/850		
900	1180	165.00	8.0	8.0					17.00	NU29/900		NUP29/900		
	1250	175.00			1032.000				17.00	NU29/950		NUP29/950		
1000	1320	185.00			1090.000				17.00	NU29/1000		NUP29/1000		
1060	1400	195.00			1155.000				20.00	NU29/1060		NUP29/1060		
1180	1540	206.00	10.0		1280.000				21.00	NU29/1180		NUP29/1180		
1) Pe	ermiss	ible axia	l disp	lacen	nent out	of cen	tral po	osition	1					

Basic Loa	, and the second	Fatique load	Limiting S for Lubrica								Weight ~			
Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	d	d _a	d _a	d _b	d _c	D _a	r _a	r _b	Bearing	
						min	max	min	min	max	max	max		Ring
kN		kN	min ⁻¹		mm								kg	
													Ū	
511	631.0	60.33	2000	2400	160	174	180	197	210	276	2.5	2.5	14.7	1.50
764	1310.0	125.26	1900	2200		186	-	199	-	261	5.0	2.0	28.9	
276	376.0	36.45	2200	2700	170	179	190	197	-	248	2.0	2.0	7.9	
607	750.0	70.34	1900	2200		188	195	211	223	293	3.0	3.0	16.6	1.70
891	1470.0	137.86	1800	2100		197	-	211	-	279	5.0	3.0	35.5	1.00
631	794.0	73.56	1800	2100		198	207	220	233	302	3.0	3.0	19.5	1.80
736	1060.0	98.20	1800	2100	000	198	208	221	233	302	3.0	3.0	31.2	1.90
383 779	531.0	48.90	1900	2200	200	212 218	220 227	233	261	298	2.0	2.0	14.0 28.4	2.70
501	1000.0 694.0	89.54	1500 1700	1800 200	000	234	240	246 254	261	342 326	3.0 2.5	3.0 2.5	18.5	2.70
531	764.0	62.14 67.01	1600	1900	220	254	260	275	-	346	2.5	2.5	20.0	
944	1280.0	108.13	1300	1600	240	258	293	298	316	422	3.0	3.0	50.5	
944	1280.0	108.13	1300	1600		258	293	298	316	422	3.0	3.0	50.5	4.68
643	962.0	82.00	1400	1700	260	278	280	300	-	382	3.0	3.0	29.0	4.00
1760	2900.0	238.85	1100	1400	200	280	309	324	-	460	4.0	4.0	90.0	
681	1020.0	85.42	1300	1600	280	296	311	320	_	404	3.0	3.0	32.5	
891	1310.0	107.03	1200	1400	300	318	325	344	360	442	3.0	3.0	43.6	
891	1310.0	107.03	1200	1400	000	318	325	344	360	442	3.0	3.0	43.6	5.63
909	1390.0	111.84	1100	1300	320	336	355	364	-	464	3.0	3.0	48.5	0.00
1076	1753.0	136.15	950	1100	360	382	390	410	-	518	4.0	4.0	67.5	
1076	1753.0	136.15	950	1100		382	390	410	427	518	4.0	4.0	67.5	10.00
1166	1982.0	151.94	850	1000	380	400	420	430	-	540	4.0	4.0	71.0	
1470	2330.0	175.33	840	1000	400	422	435	455	-	578	4.0	4.0	89.0	10.50
2255	4900.0	368.72	760	910		422	435	455	-	578	4.0	4.0	150.5	
3410	5960.0	433.49	710	840		426	460	485	-	694	5.0	5.0	350.0	
2230	4853.0	330.12	560	700	600	614	644	654	675	750	4.0	4.0	173.0	
3760	8740.0	536.62	380	450	850	878	920	930	952	1092	5.0	5.0	430.0	
4220	9810.0	592.58	300	400	900	928	977	987	1011	1152	5.0	5.0	500.0	
4577	11452.0	680.22	300	370	950	978	1027	1041	1066	1220	5.0	5.0	597.0	
4920	11600.0	678.12	300	350	1000		1085	1095	1122	1284	6.0	6.0	720.0	
5410	12800.0	735.23	280	330	1060		1150	1160	1189	1364	6.0	6.0	850.0	
6310	15300.0	852.74	250	300	1180	1216	1275	1285	1316	1504	6.0	6.0	1050.0	

Double Row Cylindrical Roller Bearings

Double row cylindrical roller bearings in NN design have two rows of cylindrical rollers guided by three ribs on inner ring. The outer ring is without ribs, that is why these bearings cannot carry axial forces. Double row cylindrical roller bearings - type NN3OK are commonly produced with tapered bore, taper 1:12 (K). These bearings can be also delivered with cylindrical bore (must be agreed in advance). Double row cylindrical roller bearings are significant for their great rigidity and are predominately used for spindle arrangements of machine tools and similar equipment. Double row cylindrical roller bearings - type NNU49 have three guiding ribs on outer ring and smooth inner ring. Bearings can carry only radial loads. Bearings - type NNU4920 and NNU4924 are also delivered matched in pairs according to the technical conditions TPF 11322-80. In this way matched bearing pairs fulfil in the arrangement the role of four-row cylindrical roller bearings and are suitable for arrangement of rolls in rolling mills, etc.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design is in the dimension tables of this publication.

Difference from standard design is designated by additional symbols according to ISO 02 4608 (section 2.2).

Lubrication Groove and Holes on Outer Ring

All sizes of double row cylindrical roller bearings with tapered bore - type NN30K can be delivered with groove and lubrication holes on outer ring (W33). This bearing design allows the introduction of the lubricant directly into the bearing between two cylindrical roller rows. In this way better bearing lubrication and higher operating reliability are reached.

Cages

Cylindrical roller bearings are commonly produced with a machined brass cage which is usually not designated. Bearings type NNU49 are produced with machined brass cage (M) which is designated.

Tolerance

Cylindrical roller bearings with tapared bore are produced only in higher tolerance classes P5 and P4. Limiting values for dimension and operation accuracy for tolerance classes P5 and P4 are in tables 12 and 13.

Bearings NNU49 and NN39 are produced in normal tolerance class. Bearing delivery in tolerance class P6 should be agreed with the supplier in advance.

Radial Clearance

Cylindrical roller bearings with a tapered bore are produced with reduced radial clearance and with mutually non-interchangable rings C1NA and C2NA. Symbols C1NA and C2NA are connected with tolerance class symbols P5 and P4, e.g. P5 + C1NA is designated P51NA. Values of radial clearance are shown in table 25. Bearings - type NNU49 are produced with normal radial clearance. Bearings delivery with radial clearance greater than C3 should be discussed with the supplier.

Misalignment

Double row cylindrical roller bearings are not suitable for arrangements where alignment of inner and outer bearing rings is not secured.

Radial Equivalent Dynamic Load

$$P_r = F_r$$
 [kN]

Radial Equivalent Static Load

$$P_{or} = F_{r}$$
 [kN]

Double Row Cylindrical Roller Bearings d = 25 to 630 mm

Dime	ensions						Basic Load	Rating	Fatique load	Limiting Speed	for
							Dynamic	Static	limit	Lubrication with	1
d	D	В	r.	Е	F	S ¹⁾	C,	C _{or}	Pu	Grease	Oil
			s min				-1	- or	u		
			111111								
mm							kN		kN	min ⁻¹	
0.5	47	40	4.0	44.0		4.0	04.5	00.0	0.00	40000	00000
25 30	47 55	16 19	1.0	41.3		1.0	21.5 28.7	23.8 32.5	2.90 3.96	19000 16000	22000 18000
35	62	20	1.0	55.0		1.0	36.9	43.8	5.34	14000	16000
40	68	21	1.0	61.0		1.0	38.3	44.7	5.45	12600	14000
45	75	23	1.0	67.5	,	1.0	44.7	53.1	6.48	11000	12600
50	80	23	1.0	72.5		1.0	48.2	59.6	7.27	10600	12000
55	90	26	1.1	81.0		1.2	64.3	81.0	9.88	9400	11000
60	95	26	1.1	86.1		1.2	68.1	89.1	10.87	8900	10000
65	100	26	1.1	91.0		1.2	70.8	98.1	11.96	8400	9400
70	110	30	1.1	100.0		1.2	90.9	128.0	15.61	7500	8400
75	115	30	1.1	105.0		1.2	90.9	128.0	15.61	7100	7900
80	125	34	1.1	113.0		1.4	114.0	162.0	19.76	6700	7500
85	130	34	1.1	118.0		1.4	119.0	178.0	21.71	6300	7100
90	140	37	1.5	127.0		1.4	131.0	192.0	23.41	6000	6700
95	145	37	1.5	132.0		14.0	139.0	207.0	25.24	5600	6300
100	150	37	1.5	137.0		1.5	144.0	224.0	27.32	5300	6000
	140	40	1.1		113.0	1.7	119.0	215.0	26.22	3800	4700
105	160	41	2.0	146.0		1.5	188.0	282.0	20.85	5000	5600
110	170	45	2.0	155.0		1.5	220.0	329.0	23.93	4700	5300
120	180	46	2.0	165.0		1.5	228.0	355.0	25.29	4500	5000
	165	40	1.1		134.5	1.7	168.0	304.0	21.99	3200	4000
130	200	52	2.0	182.0		1.5	282.0	447.0	30.95	4000	4500
140	210	53	2.0	192.0		1.5	299.0	482.0	32.79	3800	4200
150 220	225 300	56 60	2.1 3.5	206.0		1.5 2.0	322.0	521.0	34.71	3500	4000 2200
240			3.5	278.0			299.0 316.0	668.0	40.35 44.31	1800	2000
280	320 420	106	5.0	298.0 384.0		2.0 6.7	1100.0	750.0 2000.0	110.50	1600 1300	1600
320	480	121	5.0	438.0		8.0	1360.0	2510.0	133.24	1200	1400
340	520	133	6.0	473.0		9.0	1680.0	3100.0	161.02	1100	1300
360	540	134	6.0	493.0		9.0	1740.0	3350.0	171.65	1000	1200
440	650	157	8.0	596.0		13.0	2460.0	4920.0	238.02	750	890
630	850	218	8.0		704.0	5.0	3910.0	10200.0	450.19	470	600
	1) Per	missibl	e axial c	displacen	nent						

Bearing Designat	tion	Abutm	ent and Fil	let Dimens	ions		Weight	
		d	d _a	D _a	D _a	r _a	~	K
with Cylindrical	with Tapered		min	min	max	max		
			111111	111111	IIIax	IIIax		
Bore	Bore							
		mm					kg	
	NN3005K	25	29	42	43	1.0		0.12
	NN3006K	30	35	49	50	1.0		0.19
	NN3007K	35	40	56	57	1.0		0.25
	NN3008K	40	45	62	63	1.0		0.30
	NN3009K	45	50	69	70	1.0		0.38
	NN3010K	50	55	74	75	1.0		0.42
	NN3011K	55	62	82	84	1.0		0.62
	NN3012K	60	67	87	88	1.0		0.66
	NN3013K	65	72	92	93	1.0		0.71
	NN3014K	70	77	102	103	1.0		1.00
	NN3015K	75	82	107	108	1.0		1.10
	NN3016K	80	87	115	118	1.0		1.50
	NN3017K	85	92	120	123	1.0		1.60
	NN3018K	90 95	98	129 134	132 137	1.5		2.00
	NN3019K	100		134	142	1.5		2.10
NNU4920M	NN3020K	100	108 106	129	134	1.5	1.92	2.20
NNU492UW	NN3021K	105	114	148	151	2.0	1.92	2.80
	NN3021K	110	119	157	161	2.0		3.55
	NN3024K	120	129	167	171	2.0		3.85
NNU4924M	HHOOLAN	120	126	153	159	1.0	2.81	0.00
	NN3026K	130	139	184	191	2.0	2.01	5.75
	NN3028K	140	150	194	200	2.0		6.20
	NN3030K	150	162	208	213	2.0		7.50
NN3944		220				*	12.00	
NN3948		240				*	13.00	
	NN3056K	280	298	388	402	3.0	-	49.60
	NN3064K	320	338	442	462	3.0	-	74.20
	NN3068K	340	362	477	498	4.0	-	99.00
	NN3072K	360	382	497	518	4.0	-	105.00
	NN3088K	440	468	602	622	5.0	-	169.40
NNU49/630		630				*	363.00	

Single Row Needle Roller Bearings

Single row needle roller bearings have needle rollers guided in axial direction by outer ring ribs and the inner ring is smooth as well as by single row cylindrical roller bearings in NU design. That is why these bearings cannot carry axial loads. Single row needle roller bearings have a small height of the cross section and relatively high basic load rating and are especially suitable for arrangements with limited space in radial direction. Bearings have a groove and lubrication holes on the outer ring periphery. Single row needle roller bearings are produced without cage. Bearings without cage (V) have a full complement of cylindrical rollers which results in higher load rating, but smaller limiting rotational speed in comparison with bearings of the same size with cage. Bearings are also delivered without inner ring (R NA). In this case the inner raceway is created directly on the journal.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design is in the dimension tables of this publication. Difference from standard design is designated by additional symbols (section 2.2).

Tolerance

Single row needle roller bearings are commonly produced in normal tolerance class PO (symbol PO is not indicated). For special arrangements demanding accuracy, bearings in higher tolerance class P6 are delivered. Delivery of these bearings should be discussed in advance. Limiting values of dimension and running accuracy are shown in table 10.

Radial Clearance

Commonly produced single row needle roller bearings have normal radial clearance which is not indicated. For special arrangements bearings with greater radial clearance (C3) are delivered. Radial clearance values are shown in table 26.

Bearings without Inner Rings

For arrangements with limited mounting space single row needle roller bearings without inner ring are delivered (R NA). Needle rollers of these bearings roll directly on the ground journal. Inner raceways diameter tolerances for single row needle roller bearings without inner ring are shown in following table.

Journal Diameter F _w	Radial Clearance Smaller	Normal to 80 mm	over 80 mm	Greater to 65 mm	over 65
mm					
Inner Raceway					
Diameter	k5	h5	g6	g6	f6
Tolerance					

Raceway deviations of roundness and cylindricity must not be greater than deviations for tolerance class IT3. Values of basic load ratings C_r and C_{or} , shown in dimension tables are valid for bearings without inner ring if inner raceway hardness on the journal will be in the range 59 to 65 HRC. With decreasing raceway hardness also the load rating values decrease and the table value C_r should be multiplied by factor f_t (Table 7). Minimum depth of hardened layer after grinding should be 1 to 3 mm according to bearing dimension and load. Raceway surface roughness for common arrangements $R_a = 0.2$, for less demanding arrangements $R_s = 0.4$.

Misalignment

Mutual ring misalignment of single row needle roller bearings is small. Permissible misalignement values are to 2'.

Radial Equivalent Dynamic Load

$$P_r = F_r$$
 [kN]

Radial Equivalent Static Load

$$P_{nr} = F_{r}$$
 [kN]

Single Row Needle Roller Bearings d = 20 to 50 mm

Dime	ensions	;					Fatique load	Limiting S	Speed	Bearing De	signation	
						Dynamic	Static	limit	for Lubric	ation with		
d	D	В	r _s	F	S ¹⁾	C _r	C _{or}	Pu	Grease	Oil	NA	R NA
			s min			,	- or	u				
						LAI		LNI	unio 1			
mm						kN		kN	min-1			
20	42	22	0.6	28	2	30.4	55.2	6.73	3800	5600	NA4004V	R NA4004V
25	47	22	0.6	34	2	36.2	65.6	8.00	3300	5000	NA4005V	R NA4005V
30	55	25	1.0	40	2	44.7	89.1	10.87	2600	4200	NA4006V	R NA4006V
35	62	27	1.0	46	2	52.1	114.0	13.90	2400	3500	NA4007V	R NA4007V
40	68	28	1.0	52	2	55.2	128.0	15.61	2100	3200	NA4008V	R NA4008V
50	72	22	0.6	58	2	43.5	116.0	14.15	1900	2800	NA4910V	R NA4910V
	80	30	1.0	62	2	59.6	153.0	18.66	1800	2700	NA4010V	R NA4010V
	41 -											
	1) Pe	ermissibl	le axial d	isplace	ment							

Abutme	nt and Fillet	Dimensions			Weight		
	d _a	d _a	D _a	r _a	~		
	min	max	max	max	NA	R NA	
m					kg		
0	24.0	26.0	38.0	0.6	0.176	0.124	
5 0	28.0	32.0	43.0	0.6	0.200	0.134	
0	34.0	38.0	50.0	1.0	0.311	0.202	
5	39.5	44.0	57.0	1.0	0.419	0.272	
)	44.0	49.0	63.0	1.0	0.495	0.306	
0	54.0	56.5	68.0	0.6	0.373	0.260	
	54.0	59.0	75.0	1.0	0.687	0.440	

Double Row Spherical Roller Bearings

Double row spherical roller bearings have two rows of spherical rollers with a common sphered raceway in the outer ring. This design enables mutual misalignment of rings. They can

simultaneously carry great radial and axial load in both directions. These bearings are produced with both cylindrical and tapered bore. These bearings are suitable for arrangements where great loads are acting and misalignment should be secured.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design and in design with tapered bore is in the dimension tables of this nublication.

Difference from standard design is designated by additional symbols (section 2.2).

Influence of operating temperature on bearing material

All spherical roller bearings goes through a special heat treatment, which allows their use in the operating temperature to 200 degrees without undesirable dimensional changes. Designation S1 isn't shown on the bearings.

Tapered Bore

Bearings with tapered bore have taper 1:12, for type 240 the taper size is 1:30 (K30). Bearings with tapered bore are fixed on the cylindrical shafts by means of adapter sleeves. Sleeve designation corresponding to individual bearings is in the dimension tables of this publication.

Lubrication Groove and Holes on Outer Ring

All types and sizes of double row spherical roller bearings are delivered besides the standard design also design W33 with groove and lubricating holes along the pheriphery that provides better lubricating and higher reliability.

Cage

Bearings have cage material and design as shown in the dimension tables of this publication. Bearings with symbols J and E have pressed steel cage, bearings with symbol M have machined brass cage.

Tolerance

Double row spherical roller bearings are commonly produced in normal tolerance class PO which is not indicated. Bearing delivery with higher tolerance class should be discussed with the supplier in advance.

Radial Clearance

Commonly produced bearings have normal radial clearance which is not indicated. For special arrangements bearings with smaller clearance C2 and greater radial clearance C3, C4 and C5 are delivered. Radial clearance values comply with standard ISO 5753 and are shown in table 27.

Misalignment

Bearings can misalign from the central position without affecting their correct function. The following table shows permissible misalignment values according to bearing type.

Bearing Type	Permissible Misalignment
239, 230, 231, 222	1°30'
223	2°
232	2°30'
223 232 240 241	2°
241	2°30'

Radial Equivalent Dynamic Load

$$\begin{array}{lll} P_r = F_r + Y_1 F_a & \text{for } F_a / F_r \leqq e & \text{[kN]} \\ P_r = 0.67 F_r + Y_2 F_a & \text{for } F_a / F_r > e & \text{[kN]} \end{array}$$

Factor values e, Y₁, and Y₂ for individual bearings are indicated in dimension tables of this publication.

Radial Equivalent Static Load

$$P_{or} = F_{r} + Y_{o}F_{a}$$
 [kN]

 $P_{or} = F_r + Y_0 F_a \\ Factor values \ Y_0 \ for individual bearings are indicated in the dimensional tables of this$ publication.

Double Row Spherical Roller Bearings d = 25 to 85 mm

Dime	nsions					Basic L	.oad	Fatique load	Limiting Sp	eed	Bearing Designation	
						Rating		limit	for Lubrica	tion with		
d	D	В	r _s	а	b	Dyn.	Stat.	Pu	Grease	Oil	with Cylindrical	with Tapered
			s min			C _r	C _{or}	u			Bore	Bore
							or	LAI	and a 1		Doile	Doic
mm						kN		kN	min ⁻¹			
0.5	FO	10.0	1.0	_		40	40.1	F.00	0500	11000	0000EEW22 I	OOOOEEKWOO I
25 30	52 62	18,0	1,0			46 61	46,1 64,5	5,62 7,87	7500	11000 9500	22205EW33J 22206EW33J	22205EKW33J 22206EKW33J
35	72	23,0	1,1			81	92	11,22	6300	8000	22207EW33J	22200EKW33J
40	80	23,0	1,1	2,5	5,4	93	105	12,80	6000	7500	22207EW33J	22207EKW33J
40	90	33.0	1,5	3,0	5,5	140	160	19,51	4100	5100	22308EW33J	22308EKW33J
	90	33,0	1,5	3,0	5,5	140	160	19,51	4100	5100	22308EW33MH	22308EKW33MH
45	85	23,0	1,1	2,5	5,8	97	113	13,78	5300	6700	22209EW33J	22209EKW33J
.0	100	36,0	1,5	3,0	5,5	167	194	23,66	3700	4500	22309EW33J	22309EKW33J
	100	36,0	1,5	3,0	5,5	167	194	23,66	3700	4500	22309EW33MH	22309EKW33MH
50	90	23,0	1,1	2,5	5,8	105	124	15,12	5000	6300	22210EW33J	22210EKW33J
	110	40,0	2,0	3,0	5,5	200	238	29,02	3300	4000	22310EW33J	22310EKW33J
	110	40,0	2,0	3,0	5,5	200	238	29,02	3300	4000	22310EW33MH	22310EKW33MH
55	100	25,0	1,5	3,0	5,5	125	147	17,93	4500	5600	22211EW33J	22211EKW33J
	120	43,0	2,0	3,0	5,5	230	279	34,02	3000	3800	22311EW33J	22311EKW33J
	120	43,0	2,0	3,0	5,5	230	279	34,02	3000	3800	22311EW33MH	22311EKW33MH
60	110	28,0	1,5	3,0	5,5	152	183	22,32	4000	5000	22212EW33J	22212EKW33J
	130	46,0	2,1	3,0	5,5	273	315	38,41	2800	3600	22312EW33J	22312EKW33J
	130	46,0	2,1	3,0	5,5	273	315	38,41	2800	3600	22312EMHD2	22312EKMHD2
	130	46,0	2,1	3,0	5,5	304	315	38,41	2800	3600	22312EW33MH**	22312EKW33MH
	130	46,0	2,1	3,0	5,5	209	230	28,05	2800	3300	22312W33M*	22312KW33M
65	120	31,0	1,5	3,0	5,5	182	224	27,32	3800	4800	22213EW33J	22213EKW33J
	140	48,0	2,1	3,0	5,5	304	351	42,49	2600	3400	22313EW33J	22313EKW33J
	140	48,0	2,1	3,0	5,5	304	351	42,49	2600	3400	22313EMHD2	22313EKMHD2
	140	48,0	2,1	3,0	5,5	222	252	30,50	2500	3200	22313W33M*	22313KW33M
70	125	31,0	1,5	3,0	5,5	189	239	29,15	3600	4500	22214EW33J	22214EKW33J
	150	51,0	2,1	3,0	5,5	344	402	47,64	2400	3100	22314EW33J	22314EKW33J
	150	51,0	2,1	3,0	5,5	344	402	47,64	2400	3100	22314EMHD2	22314EKMHD2
	150	51,0	2,1	3,0	5,5	383	402	47,64	2400	3100	22314EW33MH**	22314EKW33MH
	150	51,0	2,1	3,0	5,5	289	330	39,11	2400	3000	22314W33M*	22314KW33M
75	130	31,0	1,5	3,0	5,5	196	255	30,87	3400	4300	22215EW33J	22215EKW33J
	160	55,0	2,1	4,5	8,3	396	489	56,82	2300	3000	22315EW33J	22315EKW33J
	160	55,0	2,1	4,5	8,3	396	489	56,82	2300	3000	22315EMHD2	22315EKMHD2
	160	55,0	2,1	4,5	8,3	295	354	41,13	2200	2800	22315W33M*	22315KW33M
80	140	33,0	2,0	3,0	5,5	224	295	34,96	3200	4000	22216EW33J	22216EKW33J
	140	33,0	2,0	3,0	5,5	154	197	23,35	2400	3000	22216W33M*	22216KW33M
	170	58,0	2,1	4,5	8,3	443	551	62,84	2200	2800	22316EW33J	22316EKW33J
	170 170	58,0 58,0	2,1	4,5 4,5	8,3	443 349	551 411	62,84 46,88	2200 2200	2800 2800	22316EMHD2 22316W33M*	22316EKMHD2 22316KW33M
85	150		2,1		8,3		337					22217EKW33J
80	150	36,0 36,0	2,0 2,0	3,0	5,5 5,5	260 171	214	39,16 24,87	3000 2200	3800 2800	22217EW33J 22217W33M*	22217EKW33J 22217KW33M
	180	60,0	3,0	4,5	8,3	482	603	67,58	2000	2600	22317EW33J	22317EKW33J
	180	60,0	3,0	4,5	8,3	482	603	67,58	2000	2600	22317EW333 22317EMHD2	22317EKW333
	180	60,0	3,0	4,5	8,3	377	447	50,10	2000	2500	22317W33M*	22317ERWIND2 22317KW33M
	100	00,0	0,0	1,0	0,0	517		,			th * must be agreed	

Abutment and Fillet Dimensions				Weight		Corresp. Corresp. Cor			Factors	Factors				
						Adapter	Withdrawal	Nut						
d	d_a	D_a	r _a	~	K	Sleeve	Sleeve		е	Y ₁	Y_2	Y_0		
	min	max	max											
mm				kg										
25	31	46	1,0	0,16	0,155	H305	AH305	KM6	0,34	2,0	3,0	2,0		
30	36	56	1,0	0,25	0,245	H306	AH306	KM7	0,31	2,1	3,2	2,1		
35	42	65	1,0	0,42	0,410	H307	AH307	KM8	0,31	2,2	3,3	2,1		
40	47	73	1,0	0,51	0,500	H308	AH308	KM9	0,27	2,5	3,7	2,4		
	49	81	1,5	1,05	1,030	H2308	AH2308	KM9	0,36	1,8	2,6	1,8		
	49	81	1,5	1,07	1,050	H2308	AH2308	KM9	0,36	1,8	2,6	1,8		
45	52	78	1,0	0,55	0,530	H309	AH309	KM10	0,26	2,6	3,9	2,6		
	54	91	1,5	1,40	1,370	H2309	AH2309	KM10	0,36	1,9	2,8	1,9		
	54	91	1,5	1,43	1,400	H2309	AH2309	KM10	0,36	1,9	2,8	1,9		
50	57	83	1,0	0,59	0,570	H310	AH310X	KM11	0,24	2,8	4,2	2,8		
	60	100	2,0	1,87	1,830	H2310	AH2310X	KM11	0,36	1,9	2,7	1,8		
	60	100	2,0	1,92	1,880	H2310	AH2310X	KM11	0,36	1,9	2,7	1,8		
55	64	91	1,5	0,83	0,820	H311	AH311X	KM12	0,23	2,9	4,4	2,9		
	65	110	2,0	2,36	2,310	H2311	AH2311X	KM12	0,35	1,9	2,8	1,9		
	65	110	2,0	2,44	2,390	H2311	AH2311X	KM12	0,35	1,9	2,8	1,9		
60	69	101	1,5	1,14	1,120	H312	AH312X	KM13	0,24	2,8	4,2	2,8		
	72	118	2,0	2,91	2,840	H2312	AH2312X	KM13	0,35	1,9	2,9	1,9		
	72	118	2,0	3,03	2,970	H2312	AH2312X	KM13	0,35	1,9	2,9	1,9		
	72	118	2,0	2,95	2,880	H2312	AH2312X	KM13	0,35	1,9	2,9	1,9		
	72	118	2,0	3,00	2,900	H2312	AH2312X	KM13	0,41	1,6	2,4	1,6		
65	74	111	1,5	1,51	1,480	H313	AH313	KM15	0,24	2,9	4,2	2,8		
	77	128	2,0	3,46	3,380	H2313	AH2313	KM15	0,34	2,0	3,0	2,0		
	77	128	2,0	3,64	3,560	H2313	AH2313	KM15	0,34	2,0	3,0	2,0		
	77	128	2,0	3,60	3,500	H2313	AH2313	KM15	0,38	1,8	2,5	1,7		
70	79	116	1,5	1,61	1,570	H314	AH314	KM16	0,23	2,9	4,2	2,8		
	82	138	2,0	4,19	4,100	H2314	AH2314X	KM16	0,34	2,0	3,0	2,0		
	82	138	2,0	4,40	4,310	H2314	AH2314X	KM16	0,34	2,0	3,0	2,0		
	82	138	2,0	4,38	4,290	H2314	AH2314X	KM16	0,34	2,0	3,0	2,0		
	82	138	2,0	4,30	4,200	H2314	AH2314X	KM16	0,37	1,8	2,6	1,7		
75	84	121	1,5	1,70	1,660	H315	AH315	KM17	0,22	3,1	4,5	2,9		
, 0	87	148	2,0	5,27	5,150	H2315	AH2315X	KM17	0,33	2,0	3,0	2,0		
	87	148	2,0	5,48	5,360	H2315	AH2315X	KM17	0,33	2,0	3,0	2,0		
	87	148	2,0	5,40	5,200	H2315	AH2315X	KM17	0,38	1,8	2,5	1,7		
80	90	130	2,0	2,11	2,070	H316	AH316	KM18	0,22	3,1	4,5	3,0		
50	90	130	2,0	2,20	2,100	H316	AH316	KM18	0,26	2,6	3,8	2,5		
	92	158	2,0	6,25	6,110	H2316	AH2316X	KM18	0,26	2,0	3,0	2,0		
	92	158	2,0	6,51	6,370	H2316	AH2316X	KM18	0,33	2,0	3,0	2,0		
	92	158	2,0	6,30	6,200	H2316	AH2316X	KM18	0,36	1,8	2,7	1,8		
85	95	140	2,0	2,66	2,610	H317	AH317X	KM19	0,36	3,0	4,4	2,9		
00	95	140	2,5	2,80	2,700	H317	AH317X AH317X	KM19				2,5		
									0,26	2,6	3,7			
	99	166	2,5	7,16	7,010	H2317	AH2317X	KM19	0,32	2,1	3,1	2,0		
	99	166	2,5	7,48	7,340	H2317	AH2317X	KM19	0,32	2,1	3,1	2,0		
	99	166	2,5	7,40	7,200	H2317	AH2317X	KM19	0,36	1,9	2,7	1,8		

Double Row Spherical Roller Bearings d = 90 to 120 mm

Dime	Dimensions				Basic L	_oad	Fatique load	Limiting S	peed	Bearing Designation		
						Rating		limit	for Lubrica	tion with		
d	D	В	rs	а	b	Dyn.	Stat.	Pu	Grease	Oil	with Cylindrical	with Tapered
			min			C _r	C _{or}				Bore	Bore
						kN	or	kN	min ⁻¹		Doile	Boic
mm						KIN		KIN	min .			
90	160	40,0	2,0	4,5	8,3	308	406	46,31	2600	3400	22218EW33J	22218EKW33J
	160	40,0	2,0	4,5	8,3	209	265	30,22	2000	2500	22218W33M*	22218KW33M
	160	52,4	2,0	3,0	5,5	303	412	46,99	1900	2400	23218W33M	23218KW33M
	160	52,4	2,0	3,0	5,5	370	522	59,54	1900	2600	23218CW33J	23218CKW33J
	190	64,0	3,0	4,5	8,3	536	673	74,19	1900	2400	22318EW33J	22318EKW33J
	190	64,0	3,0	4,5	8,3	536	673	74,19	1900	2400	22318EMHD2	22318EKMHD2
	190	64,0	3,0	4,5	8,3	437	522	57,55	1900	2400	22318W33M*	22318KW33M
95	170	43,0	2,1	4,5	8,3	346	464	52,00	2400	3200	22219EW33J	22219EKW33J
	170	43,0	2,1	4,5	8,3	259	329	36,87	2000	2500	22219W33M	22219KW33M
	200	67,0	3,0	4,5	8,3	473	566	61,43	1800	2200	22319W33M*	22319KW33M
	200	67,0	3,0	4,5	8,3	587	744	80,75	1800	2300	22319EW33J	22319EKW33J
	200	67,0	3,0	4,5	8,3	587	744	80,75	1800	2300	22319EMHD2	22319EMHD2
100	165	52,0	2,0	3,0	5,5	379	587	65,79	2000	2800	23120CW33J	23120CKW33J
	180	46,0	2,1	4,5	8,3	379	510	64,19	2200	3000	22220EW33J	22220EKW33J
	180	46,0	2,1	4,5	8,3	290	375	47,20	1900	2400	22220W33M*	22220KW33M
	180	60,3	2,1	4,5	8,3	465	667	83,95	1700	2200	23220CW33J	23220CKW33J
	180	60,3	2,1	4,5	8,3	390	532	66,96	1700	2000	23220W33M	23220KW33M
	215	73,0	3,0	4,5	8,3	682	842	100,48	1700	2200	22320EW33J	22320EKW33J
	215	73,0	3,0	4,5	8,3	563	686	81,86	1700	2000	22320W33M*	22320KW33M
110	170	60,0	2,0	3,0	5,5	402	717	79,04	1800	2200	24022CW33J	24022CK30W33J
	170	45,0	2,0	3,0	5,5	329	516	56,88	2200	3000	23022CW33J	23022CKW33J
	170	45,0	2,0	3,0	5,5	362	516	56,88	2200	3000	23022EW33MH**	23022EKW33MH
	180	56,0	2,0	4,5	8,3	374	585	63,82	1900	2600	23122CW33J	23122CKW33J
	180	56,0	2,0	4,5	8,3	354	541	59,02	1700	2000	23122W33M*	23122KW33M
	180	69,0	2,0	3,0	5,5	501	849	92,62	1000	1400	24122CW33J	24122CK30W33J
	200	53,0	2,1	4,5	8,3	488	653	69,82	2000	2800	22222EW33J	22222EKW33J
	200	53,0	2,1	4,5	8,3	365	474	50,68	1700	2000	22222W33M*	22222KW33M
	200	69,8	2,1	4,5	8,3	586	867	92,71	1600	2000	23222CW33J	23222CKW33J
	200	69,8	2,1	4,5	8,3	502	706	75,49	1500	1800	23222W33M	23222KW33M
	240	80,0	3,0	6,0	11,1	805	1000	103,10	1500	1900	22322EW33J	22322EKW33J
	240	80,0	3,0	6,0	11,1	662	801	82,59	1500	1800	22322W33M*	22322KW33M
120	180	46,0	2,0	3,0	5,5	346	572	61,77	2000	2800	23024CW33J	23024CKW33J
	180	46,0	2,0	3,0	5,5	287	467	50,43	1600	1900	23024W33M	23024KW33M
	180	60,0	2,0	3,0	5,5	413	770	83,15	1600	2000	24024CW33J	24024CK30W33J
	200	62	2,0	4,5	8,3	523	798	84,52	1800	2400	23124CW33J	23124CKW33J
	200	62,0	2,0	4,5	8,3	430	648	68,63	1500	1800	23124W33M	23124KW33M
	200	80,0	2,0	3,0	5,5	639	1080	114,39	950	1300	24124CW33J	24124CK30W33J
	215	58,0	2,1	4,5	8,3	553	775	80,96	1900	2600	22224EW33J	22224EKW33J
	215	58,0	2,1	4,5	8,3	439	580	60,59	1600	1900	22224W33M*	22224KW33M
	215	76,0	2,1	4,5	8,3	678	1020	106,56	1500	1900	23224CW33J	23224CKW33J
	215	76,0	2,1	4,5	8,3	750	1020	106,56	1500	1900	23224EW33MH**	23224EKW33MH
	215	76,0	2,1	4,5	8,3	564	803	83,89	1400	1700	23224W33M*	23224KW33M
	260	86,0	3,0	6,0	11,1	782	962	96,77	1400	1700	22324W33M*	22324KW33M
	260	86,0	3,0	6,0	11,1	938	1180	118,70	1400	1800	22324EW33J	22324EKW33J
								Deliveries of	of bearings r	narked wi	th * must be agreed	with the producer.

Deliveries of bearings marked with * must be agreed with the producer.
** Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

Abutm	ent and	Fillet Din	nensions	Weight		Corresp.	Corresp.	Corresp.	Factors			
						Adapter	Withdrawal	Nut				
d	d _a	Da	r _a	~	К	Sleeve	Sleeve		е	Y ₁	Y ₂	Y ₀
	min	max	max									
mm				kg								
90	100	150	2,0	3,40	3,330	H318	AH318X	KM20	0,23	2,9	4,2	2,8
	100	150	2,0	3,60	3,400	H318	AH318X	KM20	0,26	2,6	3,7	2,4
	100	150	2,0	4,70	4,600	H2318	AH3218X	KM20	0,33	2,0	3,0	1,9
	100	150	2,0	4,52	4,400	H2318	AH3218X	KM20	0,31	2,2	3,3	2,2
	104	176	2,5	8,54	8,350	H2318	AH2318X	KM20	0,33	2,1	3,1	2,0
	104	176	2,5	8,89	8,700	H2318	AH2318X	KM20	0,33	2,1	3,1	2,0
	104	176	2,5	8,80	8,600	H2318	AH2318X	KM20	0,37	1,8	2,6	1,7
95	107	158	2,0	4,17	4,080	H319	AH319X	KM21	0,23	2,9	4,2	2,7
	107	158	2,0	4,40	4,300	H319	AH319X	KM21	0,26	2,5	3,6	2,4
	109	186	2,5	10,30	10,100	H2319	AH2319	KM21	0,37	1,8	2,6	1,7
	109	186	2,5	9,86	9,640	H2319	AH2319	KM21	0,33	2,1	3,1	2,0
	109	186	2,5	10,30	10,000	H2319	AH2319	KM21	0,33	2,1	3,1	2,0
100	110	155	2,0	4,40	4,260	H3120	AH3120X	KM22	0,29	2,4	3,5	2,3
	112	168	2,0	5,01	4,900	H320	AH320X	KM22	0,24	2,9	4,1	2,7
	112	168	2,0	5,30	5,200	H320	AH320X	KM22	0,27	2,5	3,6	2,4
	112	168	2,0	6,67	6,490	H2320	AH3220X	KM22	0,31	2,2	3,2	2,1
	112	168	2,0	6,90	6,700	H2320	AH3220X	KM22	0,34	2,0	2,8	1,9
	114	201	2,5	12,30	12,100	H2320	AH2320X	KM22	0,33	2,0	3,0	2,0
	114	201	2,5	13,00	12,700	H2320	AH2320X	KM22	0,37	1,8	2,6	1,7
110	120	160	2,0	5,04	4,950	_	_	-	0,32	2,1	3,2	2,1
	120	160	2,0	3,68	3,560	H322	AH3122X	KM24	0,24	2,9	4,3	2,8
	120	160	2,0	3,73	3,610	H322	AH3122X	KM24	0,24	2,9	4,3	2,8
	120	170	2,0	5,36	5,190	H3122	AH3122X	KM24	0,30	2,3	3,4	2,2
	120	170	2,0	6,00	5,800	H3122	AH3122X	KM24	0,31	2,2	3,1	2,1
	120	170	2,0	6,94	6,830	-	AH24122	KM23	0,35	1,9	2,8	1,9
	122	188	2,0	7,09	6,940	H3222	AH3120X	KM24	0,25	2,7	4,0	2,6
	122	188	2,0	7,50	7,400	H3222	AH3120X	KM24	0,27	2,4	3,5	2,3
	122	188	2,0	9,65	9,380	H2322	AH3222X	KM25	0,33	2,1	3,1	2,0
	122	188	2,0	9,90	9,600	H2322	AH3222X	KM25	0,36	1,9	2,7	1,8
	124	226	2,5	17,20	16,800	H2322	AH2322X	KM25	0,33	2,1	3,1	2,0
	124	226	2,5	18,20	17,900	H2322	AH2322X	KM25	0,36	1,8	2,6	1,7
120	130	170	2,0	4,04	3,910	H3024	AH3024X	KM26	0,23	3,0	4,5	2,9
	130	170	2,0	4,30	4,200	H3024	AH3024X	KM26	0,24	2,7	4,2	2,6
	130	170	2,0	5,35	5,260	_	AH24024	KM25	0,30	2,3	3,4	2,2
	130	190	2,0	7,69	7,450	H3124	AH3124X	KM26	0,28	2,4	3,5	2,3
	130	190	2,0	8,20	8,000	H3124	AH3124X	KM26	0,31	2,1	3,1	2,0
	130	190	2,0	10,10	9,900	-	AH24124	KM26	0,37	1,8	2,7	1,8
	132	203	2,0	8,96	8,760	H3124	AH3124X	KM26	0,25	2,7	3,9	2,5
	132	203	2,0	9,40	9,200	H3124	AH3124X	KM26	0,28	2,4	3,4	2,3
	132	203	2,0	11,80	11,500	H2324	AH3224X	KM27	0,33	2,0	3,0	2,0
	132	203	2,0	12,10	11,800	H2324	AH3224X	KM27	0,33	2,0	3,0	2,0
	132	203	2,0	12,30	11,900	H2324	AH3224X	KM27	0,36	1,9	2,7	1,8
	134	246	2,5	22,10	21,600	H2324	AH2324X	KM27	0,36	1,9	2,7	1,8
	134	246	2,5	21,50	21,100	H2324	AH2324X	KM27	0,33	2,1	3,1	2,0
	134	246	2,5	21,50	21,100	H2324	AH2324X	KM2/	0,33	2,1	3,1	2,0

Double Row Spherical Roller Bearings d = 130 to 150 mm

Dime	nsions					Basic I	Load	Fatique load	Limiting Sp		Bearing Designati	on
						Rating		limit	for Lubrica	tion with		
d	D	В	r _s	а	b	Dyn.	Stat.	Pu	Grease	Oil	with Cylindrical	with Tapered
			min			C,	C _{or}				Bore	Bore
mm						kN	UI UI	kN	min-1			
						KIV		KIV				
130	200	52,0	2,0	4,5	8,3	444	711	74,61	1900	2600	23026CW33J	23026CKW33J
100	200	52,0	2.0	3.0	5,5	367	579	60,76	1500	1800	23026W33M	23026KW33M
	200	69.0	2,0	4,5	8,3	539	978	102,63	1500	1900	24026CW33J	24026CK30W33J
	210	64,0	2,0	4,5	8,3	474	752	78,21	1400	1700	23126W33M	23126KW33M
	210	64,0	2,0	4,5	8,3	561	913	94,96	1700	2200	23126CW33J	23126CKW33J
	210	80,0	2,0	3.0	5,5	657	1160	120,65	900	1200	24126CW33J	24126CK30W33J
	230	64,0	3,0	6,0	11,1	641	948	96,92	1800	2400	22226EW33J	22226EKW33J
	230	64,0	3,0	6,0	11,1	708	948	96,92	1800	2400	22226EW33MH**	
	230	64,0	3,0	6,0	11,1	525	726	74,22	1500	1800	22226W33M*	22226KW33M
	230	80,0	3,0	6,0	11,1	636	948	96,92	1300	1600	23226W33M	23226KW33M*
	230	80,0	3,0	4,5	8,3	753	1180	120,64	1300	1700	23226CW33J	23226CKW33J
	280	93,0	4,0	7,5	13,9	904	1130	111,11	1300	1600	22326W33M*	22326KW33M
	280	93,0	4,0	7,5	13,9	1090	1380	135,69	1300	1700	22326EW33J	22326EKW33J
140	210	53,0	2,0	4,5	8,3	380	633	65,26	1400	1700	23028W33M	23028KW33M
	210	53,0	2,0	4,5	8.3	463	781	80,52	1800	2400	23028CW33J	23028CKW33J
	210	53,0	2,0	4,5	8,3	511	781	80,52	1800	2400	23028EW33MH**	23028EKW33MH
	210	69,0	2,0	4,5	8,3	549	1040	107,23	1400	1800	24028CW33J	24028CK30W33J
	225	68,0	2,1	4,5	8,3	540	865	88,07	1300	1600	23128W33M	23128KW33M
	225	68,0	2,1	4,5	8,3	629	1030	104,87	1600	2000	23128CW33J	23128CKW33J
	225	85,0	2,1	4,5	8.3	740	1330	135,41	850	1100	24128CW33J	24128CK30W33J
	250	68,0	3,0	6,0	11,1	747	1080	107,80	1700	2200	22228EW33J	22228EKW33J
	250	68,0	3,0	6,0	11,1	605	822	82,04	1400	1700	22228W33M*	22228KW33M
	250	88.0	3,0	6,0	11.1	895	1370	136,74	1200	1600	23228CW33J	23228CKW33J
	250	88,0	3,0	6,0	11,1	815	1320	131,75	1200	1600	23228CW33M	23228CKW33M
	300	102,0	4,0	7,5	13,9	1220	1560	150,17	1200	1500	22328CW33J	22328CKW33J
	300	102,0	4,0	7,5	13,9	993	1270	122,25	1200	1500	22328W33M	22328KW33M
150	225	56,0	2,1	4,5	8,3	517	881	88,97	1700	2200	23030CW33J	23030CKW33J
	225	56,0	2,1	4,5	8,3	573	881	88,97	1700	2200	23030EW33MH**	23030EKW33MH
	225	56,0	2,1	4,5	8,3	419	697	70,39	1300	1600	23030W33M*	23030KW33M
	225	75,0	2,1	3,0	5,5	635	1220	123,21	1300	1700	24030CW33J	24030CK30W33J
	250	80,0	2,1	4,5	8,3	711	1130	111,93	1200	1500	23130W33M	23130KW33M
	250	80,0	2,1	6,0	11,1	823	1310	129,76	1400	1800	23130CW33J	23130CKW33J
	250	100,0	2,1	4,5	8,3	968	1690	167,40	800	1000	24130CW33J	24130CK30W33J
	270	73,0	3,0	7,5	13,9	863	1260	123,00	1600	2000	22230EW33J	22230EKW33J
	270	73,0	3,0	7,5	13,9	668	920	89,81	1300	1600	22230W33M*	22230KW33M
	270	96,0	3,0	6,0	11,1	1040	1620	158,14	1100	1500	23230CW33J	23230CKW33J
	270	96,0	3,0	7,5	13,9	874	1300	126,90	1100	1400	23230W33M	23230KW33M
	320	108,0	4,0	9,0	16,7	1370	1850	174,60	1000	1400	22330CW33J	22330CKW33J
	320	108,0	4,0	9,0	16,7	1190	1610	151,95	1000	1400	22330CW33M	22330CKW33M
160	240	60,0	2,1	6,0	11,1	587	1010	100,05	1700	2200	23032CW33J	23032CKW33J
	240	60,0	2,1	6,0	11,1	521	903	89,45	1200	1500	23032W33M	23032KW33M
	240	80,0	2,1	4,5	8,3	719	1400	138,68	1100	1500	24032CW33J	24032CK30W33J
	270	86,0	2,1	6,0	11,1	817	1310	126,98	1100	1400	23132W33M	23132KW33M
								Deliveries of	f bearings m	arked wi	th * must be agreed	d with the producer.

Abutm	ent and	Fillet Din	nensions	Weight		Corresp.	Corresp.	Corresp.	Factors				
						Adapter	Withdrawal	Nut					
d	d _a	D _a	r _a		K	Sleeve	Sleeve		е	Y,	Υ,	Yo	
	min	max	max	. ~						1	2	U	
mm				kg									
				ivg									
130	140	190	2,0	5,85	5,670	H3026	AH3026X	KM28	0,23	2,9	4,3	2,9	
100	140	190	2,0	6,30	6,100	H3026	AH3026X	KM28	0,26	2,6	3,8	2,5	
	140	190	2,0	7,92	7,790	-	AH24026	KM27	0,20	2,2	3,2	2,1	
	140	200	2,0	9,10	8,800	H3126	AH3126X	KM28	0,30	2,2	3,2	2,1	
	140	200	2,0	8,47	8,200	H3126	AH3126X	KM28	0,28	2,4	3,6	2,4	
	140	200	2,0	10,90	10,700	110120	AH24126	KM28	0,25	1,9	2,9	1,9	
	144	216	2,5	11,20	11,000	H3126	AH3126X	KM28	0,26	2,6	3,8	2,5	
	144	216	2,5	11,60	11,300	H3126	AH3126X	KM28	0,26	2,6	3,8	2,5	
	144	216	2,5	11,80	11,700	H3126	AH3126X	KM28	0,29	2,3	3,3	2,2	
	144	216	2,5	15,00	14,400	H2326	AH3226X	KM29	0,25	1,9	2,7	1,8	
	144	216	2,5	13,90	13,500	H2326	AH3226X	KM29	0,33	2,1	3,1	2,0	
	148	262	3,0	28,60	28,000	H2326	AH2326X	KM29	0,36	1,8	2,7	1,8	
	148	262	3,0	26,80	26,200	H2326	AH2326X	KM29	0,33	2,1	3,1	2,0	
140	150	200	2,0	6,90	6,700	H3028	AH3028X	KM30	0,33	2,7	4,2	2,6	
140	150	200	2,0	6,36	6,160	H3028	AH3028X	KM30	0,24	3,0	4,5	3,0	
	150	200	2,0	6,58	6,380	H3028	AH3028X	KM30	0,22	3,0	4,5	3,0	
	150	200	2,0	8,52	8,380	110020	AH24028	KM29	0,29	2,3	3,4	2,3	
	152	213	2,0	10,80	10,500	H3128	AH3128X	KM30	0,30	2,2	3,2	2,1	
	152	213	2,0	10,30	10,000	H3128	AH3128X	KM30	0,30	2,5	3,7	2,4	
	152	213	2,0	13,10	12,900	-	AH24128	KM30	0,35	1,9	2,9	1,9	
	154	236	2,5	14,10	13,800	H3128	AH3128X	KM30	0,35	2,7	3,9	2,5	
	154	236	2,5	15,00	14,600	H3128	AH3128X	KM30	0,28	2,4	3,4	2,2	
	154	236	2,5	18,40	17,800	H2328	AH3228X	KM31	0,23	2,0	3,0	2,0	
	154	236	2,5	18,60	18,000	H2328	AH3228X	KM31	0,33	2,0	3,0	2,0	
	158	282	3,0	33,30	32,600	H2328	AH2328X	KM31	0,34	2,0	3,0	2,0	
	158	282	3,0	35,60	34,800	H2328	AH2328X	KM31	0,38	1,8	2,5	1,7	
150	162	213	2,0	7,74	7,500	H3030	AH3030X	KM32	0,22	3,1	4,6	3,0	
100	162	213	2,0	7,99	7,750	H3030	AH3030X	KM32	0,22	3,1	4,6	3,0	
	162	213	2,0	8,30	8,000	H3030	AH3030X	KM32	0,24	2,7	4,2	2,6	
	162	213	2,0	10,70	10,500	_	AH24030	KM31	0,30	2,3	3,4	2,2	
	162	238	2,0	16,60	16,100	H3130	AH3130X	KM33	0,32	2,1	3,0	2,0	
	162	238	2,0	15,50	15,000	H3130	AH3130X	KM33	0,29	2,3	3,4	2,3	
	162	238	2,0	19,90	19,600	-	AH24130	KM32	0,37	1,8	2,7	1,8	
	164	256	2,5	17,90	17,500	H3130	AH3130X	KM33	0,25	2,7	3,9	2,5	
	164	256	2,5	18,60	18,200	H3130	AH3130X	KM33	0,28	2,3	3,4	2,2	
	164	256	2,5	23,30	22,600	H2330	AH3230X	KM33	0,28	2,0	3,0	2,0	
	164	256	2,5	24,60	23,900	H2330	AH3230X	KM33	0,36	1,8	2,7	1,8	
	168	302	3,0	40,30	39,500	H2330	AH2330X	KM33	0,33	2,0	3,0	2,0	
	168	302	3,0	41,70	40,800	H2330	AH2330X	KM33	0,33	1,8	2,7	1,8	
160	172	228	2,0	9,40	9,100	H3032	AH3032	KM34	0,37	3,1	4,6	3,0	
100	172	228	2,0	10,30	10,000	H3032	AH3032	KM34	0,24	2,8	4,0	2,6	
	172	228	2,0	12,90	12,700	- 10002	AH24032	KM34	0,30	2,3	3,4	2,0	
	172	258	2,0	21,30	20,700	H3132	AH3132	KM36	0,32	2,1	3,0	2,0	
	172	200	2,0	_1,00	20,700	. 10102	10 102		0,02	∠, '	0,0	2,0	

Double Row Spherical Roller Bearings d = 160 to 200 mm

Dime	Dimensions				Basic I	Load	Fatique load	Limiting Sp	peed	Bearing Designati	on	
						Rating		limit	for Lubrica	tion with		
							.					
d	D	В	r _s	а	b	Dyn.	Stat.	P _u	Grease	Oil	with Cylindrical	with Tapered
			min			C _r	C _{or}				Bore	Bore
mm						kN		kN	min-1			
160	270	86,0	2,1	6,0	11,1	950	1480	143,46	1100	1400	23132CW33J	23132CKW33J
	270	109,0	2,1	4,5	8,3	1120	1980	191,92	700	900	24132CW33J	24132CK30W33J
	290	80,0	3,0	7,5	13,9	978	1440	137,69	1500	1900	22232EW33J	22232EKW33J
	290	80,0	3,0	7,5	13,9	839	1190	113,78	1200	1500	22232W33M*	22232KW33M
	290	104,0	3.0	7.5	13,9	1150	1840	175,93	1000	1400	23232CW33J	23232CKW33J
	290	104,0	3,0	7,5	13,9	1130	1830	174,98	1000	1400	23232CW33M	23232CKW33M
	340	114,0	4,0	9,0	16,7	1530	2090	193,62	1000	1300	22332CW33J	22332CKW33J
	340	114,0	4,0	9,0	16,7	1250	1680	155,64	1000	1300	22332W33M	22332KW33M
170	260	67,0	2,1	6,0	11,1	701	1190	115,35	1600	2000	23034CW33J	23034CKW33J
	260	67,0	2,1	6,0	11,1	618	1050	101,78	1100	1400	23034W33M	23034KW33M
	260	90,0	2,1	4,5	8,3	875	1660	160,90	1000	1400	24034CW33J	24034CK30W33J
	280	88,0	2,1	6,0	11,1	826	1350	129,08	1000	1300	23134W33M	23134KW33M
	280	88,0	2,1	6,0	11,1	981	1620	154,90	1200	1600	23134CW33J	23134CKW33J
	280	109,0	2,1	4,5	8,3	1150	2090	199,84	670	850	24134CW33J	24134CK30W33J
	310	86,0	4,0	7,5	13,9	921	1310	122,86	1100	1400	22234W33M	22234KW33M
	310	86,0	4,0	7,5	13,9	1080	1600	150,05	1300	1700	22234CW33J	22234CKW33J
	310	110,0	4,0	7,5	13,9	1340	2040	191,32	950	1300	23234CW33J	23234CKW33J
	310	110,0	4,0	7,5	13,9	1280	1880	176,31	950	1300	23234CW33M	23234CKW33M
	360	120,0	4,0	9,0	16,7	1400	1970	179,34	940	1200	22334W33M	22334KW33M
180	250	52,0	2,0	3,0	5,5	496	919	89,08	1700	2200	23936CW33J	23936CKW33J
	280	74,0	2,1	7,5	13,9	837	1410	133,93	1400	1800	23036CW33J	23036CKW33J
	280	74,0	2,1	6,0	11,1	725	1230	116,83	1000	1300	23036W33M	23036KW33M
	280	100,0	2,1	4,5	8,3	1050	1980	188,08	950	1300	24036CW33J	24036CK30W33J
	300	96,0	3,0	6,0	11,1	957	1540	144,43	940	1200	23136W33M	23136KW33M
	300	96,0	3,0	7,5	13,9	1150	1890	177,25	1100	1500	23136CW33J	23136CKW33J
	300	118,0	3,0	6,0	11,1	1220	2080	195,07	630	800	24136CW33J	24136CK30W33J
	320	86,0	4,0	9,0	16,7	1120	1700	157,49	1300	1700	22236CW33J	22236CKW33J
	320	86,0	4,0	9,0	16,7	943	1380	127,84	1000	1300	22236W33M	22236KW33M
	320	112,0	4,0	7,5	13,9	1360	2110	195,47	900	1200	23236CW33M	23236CKW33M
	380	126,0	4,0	12,0	22,3	1540	2130	190,73	890	1100	22336W33M	22336KW33M
190	260	52,0	2,0	3,0	5,5	551	966	92,37	1700	2200	23938EW33MH**	23938EKW33MH
	290	75,0	2,1	7,5	13,9	873	1510	141,61	1300	1700	23038CW33J	23038CKW33J
	290	75,0	2,1	6,0	11,1	759	1310	122,86	940	1200	23038W33M	23038KW33M
	290	100,0	2,1	4,5	8,3	1080	2070	194,13	920	1250	24038CW33J	24038CK30W33J
	320	104,0	3,0	7,5	13,9	1130	1840	169,45	890	1100	23138W33M	23138KW33M
	320	104,0	3,0	7,5	13,9	1310	2180	200,76	1000	1400	23138CW33J	23138CKW33J
	340	92,0	4,0	9,0	16,7	1270	1900	172,97	1200	1600	22238CW33J	22238CKW33J
	340	92,0	4,0	9,0	16,7	1040	1550	141,11	940	1200	22238W33M	22238KW33M
	340	120,0	4,0	9,0	16,7	1550	2420	220,31	850	1100	23238CW33M	23238CKW33M
	400	132,0	5,0	12,0	22,3	1920	2710	238,90	840	1000	22338CW33M	22338CKW33M
200	280	60,0	2,1	4,5	8,3	692	1160	108,79	1600	2000	23940EW33MH**	23940EKW33MH
	310	82,0	2,1	7,5	13,9	1010	1730	159,32	1200	1600	23040CW33J	23040CKW33J
	310	82,0	2,1	6,0	11,1	880	1550	142,74	890	1100	23040CW33M	23040CKW33M
	310	109,0	2,1	6,0	11,1	1250	2370	218,26	900	1200	24040CW33J	24040CK30W33J
	310	109,0	2,1	6,0	11,1	1390	2370	218,26	900	1200	24040EW33MH**	24040EK30W33MH
	340	112,0	3,0	9,0	16,7	1240	2010	181,96	840	1000	23140W33M	23140KW33M
								Deliveries of	of bearings r	narked wi	th * must be agreed	d with the producer.

Abulin	ent and	Fillet Din	nensions	Weight		Corresp.	Corresp.	Corresp.	Factors			
						Adapter	Withdrawal	Nut				
d	d _a	D _a	r _a	~	K	Sleeve	Sleeve		е	Y ₁	Y ₂	Y ₀
	min	max	max									
mm				kg								
160	172	258	2,0	19,40	18,800	H3132	AH3132	KM36	0,32	2,1	3,0	2,0
	172	258	2,0	25,70	25,300	-	AH24132	KM34	0,38	1,8	2,7	1,8
	174	276	2,5	22,70	22,200	H3132	AH3132	KM36	0,26	2,6	3,8	2,5
	174	276	2,5	24,40	23,900	H3132	AH3132	KM36	0,29	2,3	3,3	2,2
	174	276	2,5	30,30	29,400	H2332	AH3232	KM36	0,34	2,0	2,9	1,9
	174	276	2,5	31,00	30,100	H2332	AH3232	KM36	0,36	1,9	2,8	1,8
	178	322	3,0	49,50	48,500	H2332	AH2332	KM36	0,33	2,0	3,0	2,0
	178	322	3,0	51,90	50,800	H2332	AH2332	KM36	0,37	1,8	2,6	1,7
170	182	248	2,0	12,60	12,200	H3034	AH3034	KM36	0,23	2,9	4,4	2,9
	182	248	2,0	13,80	13,400	H3034	AH3034	KM36	0,25	2,7	3,9	2,6
	182	248	2,0	17,30	17,100	-	AH24034	KM36	0,31	2,2	3,2	2,1
	182	268	2,0	22,80	22,200	H3134	AH3134	KM38	0,31	2,1	3,1	2,0
	182	268	2,0	21,00	20,400	H3134	AH3134	KM38	0,29	2,4	3,5	2,3
	182	268	2,0	27,00	26,600	-	AH24134	KM36	0,36	1,9	2,8	1,8
	188	292	3,0	30,00	29,400	H3134	AH3134	KM38	0,29	2,3	3,3	2,1
	188	292	3,0	27,60	27,000	H3134	AH3134	KM38	0,26	2,6	3,9	2,6
	188	292	3,0	35,30	34,300	H2334	AH3234	KM38	0,34	2,0	3,0	2,0
	188	292	3,0	37,70	36,400	H2334	AH3234	KM38	0,36	1,9	2,8	1,8
	188	342	3,0	59,20	58,200	H2334	AH2334	KM38	0,37	1,8	2,6	1,7
180	190	240	2,0	7,74	7,500	H3936	_	-	0,18	3,7	5,5	3,7
	192	268	2,0	16,30	15,800	H3036	AH3036	KM38	0,24	2,9	4,2	2,8
	192	268	2,0	17,60	17,100	H3036	AH3036	KM38	0,26	2,6	3,7	2,5
	192	268	2,0	22,90	22,600	-	AH24036	KM38	0,32	2,1	3,1	2,0
	194	286	2,5	28,90	28,000	H3136	AH3136	KM40	0,32	2,1	3,0	2,0
	194	286	2,5	26,60	25,800	H3136	AH3136	KM40	0,29	2,3	3,4	2,3
	194	286	2,5	32,90	32,400	-	AH24136	KM38	0,37	1,8	2,7	1,8
	198	302	3,0	29,10	28,400	H3136	AH2236	KM40	0,25	2,7	4,0	2,7
	198	302	3,0	31,50	30,800	H3136	AH2236	KM40	0,28	2,4	3,4	2,3
	198	302	3,0	39,80	38,600	H2336	AH3236	KM40	0,36	1,9	2,8	1,9
	198	362	3,0	73,20	71,700	H2336	AH2336	KM40	0,37	1,8	2,6	1,7
190	200	250	2,0	8,05	7,790	H3938	-	_ 	0,17	3,9	5,8	3,8
	202	278	2,0	17,40	16,900	H3038	AH3038	HML41T	0,23	2,9	4,4	2,9
	202	278	2,0	18,80	18,300	H3038	AH3038	HML41T	0,25	2,7	3,8	2,5
	202	278	2,0	23,70	23,300	-	AH24038	KM40	0,31	2,2	3,2	2,1
	204	306	2,5	36,10	35,000	H3138	AH3138	HM42T	0,32	2,1	3,0	2,0
	204	306	2,5	33,60	32,600	H3138	AH3138	HM42T	0,30	2,3	3,4	2,2
	208	322	3,0	35,10	34,300	H3138	AH2238	HM42T	0,25	2,7	4,0	2,6
	208 208	322 322	3,0	38,40 47,70	37,700 47,100	H3138 H2338	AH2238	HM42T	0,29	2,3	3,4	2,2
	212	378	3,0 4,0			H2338 H2338	AH3238 AH2338	HM42T HM42T	0,36	1,9 1,9	2,8	1,9
200	212			84,10	82,900		AUSSO	HIVI421	0,36		2,8	1,9
200		268	2,0	11,30	11,000	H3940	AH2040		0,19	3,6	5,4	3,5
	212 212	298 298	2,0	22,20	21,500	H3040 H3040	AH3040	HML43T	0,24	2,9	4,3	2,8
			2,0	23,80	23,400	H3040	AH3040	HML43T	0,25	2,7	4,0	2,7
	212 212	298	2,0	30,10	29,600	_	AH24040	HM42T HM42T	0,32	2,1	3,1	2,1
	212	298 326	2,0 2,5	30,80 44,00	30,300	H3140	AH24040	HM44T	0,32	2,1 2,0	3,1 2,9	2,1
	214	326	2,3	44,00	42,700	H3140	AH3140	rtivi44 I	0,33	2,0	2,9	1,9

Double Row Spherical Roller Bearings d = 200 to 280 mm

Dime	Dimensions					Basic I	_oad	Fatique load	Limiting Sp	peed	Bearing Designati	on
						Rating		limit	for Lubrica	tion with		
d	D	В	r	а	b	Dyn.	Stat.	P _u	Grease	Oil	with Cylindrical	with Tapered
ď	0		r _s	а	b			' u	Circase	Oii		
			min			C _r	C _{or}				Bore	Bore
mm						kN		kN	min-1			
200	340	112,0	3,0	9,0	16,7	1480	2410	218,17	950	1300	23140CW33J	23140CKW33J
	340	140,0	3,0	6,0	11,1	1920	3160	286,06	560	700	24140EW33MH**	24140EK30W33MH
	360	98,0	4,0	9,0	16,7	1420	2140	191,63	1100	1500	22240CW33J	22240CKW33J
	360	98,0	4,0	9,0	16,7	1160	1760	157,60	890	1100	22240W33M	22240KW33M
	360	128,0	4,0	9,0	16,7	1710	2760	247,14	800	1000	23240CW33M	23240CKW33M
	420	138,0	5,0	12,0	22,3	1820	2650	230,16	790	940	22340W33M	22340KW33M
220	300 340	60,0	2,1 3.0	4,5	8,3	730 1200	1330 2090	109,87	1500	1900 1500	23944EW33MH** 23044CW33J	23944EKW33MH
	340	90,0	3,0	7,5 7,5	13,9 13,9	1020	1850	187,15 165,66	1100 790	940	23044CW33J 23044CW33M	23044CKW33J 23044CKW33M
	340	90,0	3,0	7,5 7,5	13,9	1320	2090	187,15	1100	1500	23044CW33MH**	23044CKW33MH
	340	118,0	3,0	6,0	11,1	1650	2830	253,41	850	1100	24044EW33MH**	24044EK30W33MH
	340	118,0	3,0	6,0	11,1	1480	2830	253,41	850	1100	24044EW33WH 24044CW33J	24044CK30W33WH
	370	120,0	4,0	9,0	16,7	1480	2470	217,74	750	890	23144W33M	23144KW33M
	370	120,0	4,0	9,0	16,7	1710	2890	254,76	900	1200	23144CW33J	23144CKW33J
	370	150,0	4.0	6,0	11,1	2200	3690	325,29	500	630	24144EW33MH**	24144EK30W33MH
	400	108,0	4,0	9,0	16,7	1730	2630	228,42	950	1300	22244CW33J	22244CKW33J
	400	108,0	4,0	9,0	16,7	1380	2080	180,65	790	940	22244W33M	22244KW33M
	400	144,0	4,0	9,0	16,7	2040	3290	285,74	710	840	23244CW33M	23244CKW33M
	460	145,0	5,0	9,0	16,7	2110	3130	264,42	750	890	22344W33M	22344KW33M
240	320	60.0	2.1	4.5	8,3	750	1450	115,51	1300	1700	23948EW33MH**	23948EKW33MH
	360	92,0	3,0	7,5	13,9	1080	2010	176,30	750	890	23048CW33M	23048CKW33M
	360	92,0	3,0	7,5	13,9	1260	2310	202,61	1000	1400	23048CW33J	23048CKW33J
	360	92,0	3,0	7,5	13,9	1390	2310	202,61	1000	1400	23048EW33MH**	23048EKW33MH
	360	118,0	3,0	6,0	11,1	1690	3060	268,39	800	1000	24048EW33MH**	24048EK30W33MH
	400	128,0	4,0	9,0	16,7	1690	2860	246,04	710	840	23148W33M	23148KW33M
	400	128,0	4,0	9,0	16,7	1960	3340	287,33	850	1100	23148CW33J	23148CKW33J
	400	160,0	4,0	6,0	11,1	2510	4260	366,48	480	600	24148EW33MH**	24148EK30W33MH
	440	120,0	4,0	12,0	22,3	2050	3070	259,35	900	1200	22248CW33J	22248CKW33J
	440	120,0	4,0	12,0	22,3	1660	2560	216,26	750	890	22248W33M	22248KW33M
	440	160,0	4,0	12,0	22,3	2440	3920	331,15	670	850	23248CW33M	23248CKW33M
	500	155,0	5,0	12,0	22,3	2440	3690	303,91	670	790	22348W33M	22348KW33M
260	360	75,0	2,1	4,5	8,3	1070	1930	167,62	1100	1500	23952EW33MH**	23952EKW33MH
	400	104,0	4,0	9,0	16,7	1580	2790	237,81	900	1200	23052CW33J	23052CKW33J
	400	104,0	4,0	9,0	16,7	1460	2360	201,16	670	790	23052CW33M	23052CKW33M
	400	140,0	4,0	6,0	11,1	2190 2240	4020	342,66	700	900 790	24052EW33MH**	24052EK30W33MH
	440 440	144,0 144,0	4,0 4.0	9,0 9,0	16,7 16,7	2370	3720 4130	311,54 345,87	670 670	790	23152CW33M 23152CW33J	23152CKW33M 23152CKW33J
	440	180,0	4,0	9,0 7,5	13,9	3100	5320	445,53	430	530	24152EW33MH**	24152EK30W33MH
	480	130,0	5,0	12,0	22,3	1940	3030	249,56	670	790	22252W33M	22252KW33M
	480	174.0	5.0	12,0	22,3	2700	4430	364,86	600	710	23252W33M	23252KW33M
	540	165,0	6,0	12,0	22,3	2760	4220	339,53	600	710	22352W33M	22352KW33M
280	380	75,0	2.1	6.0	11,1	1120	2100	179,00	1000	1400	23956EW33MH**	23956EKW33MH
_00	420	106,0	4,0	9,0	16,7	1440	2690	225,28	630	750	23056W33M*	23056KW33M
	420	106,0	4,0	9,0	16,7	1820	3060	256,26	850	1100	23056EW33MH**	23056EKW33MH
	420	106,0	4,0	9,0	16,7	1650	3060	256,26	850	1100	23056CW33J	23056CKW33J
	420	140,0	4,0	6,0	11,1	2240	4280	358,43	670	850	24056EW33MH**	24056EK30W33MH
	460	146,0	5,0	9,0	16,7	2180	3900	321,21	600	710	23156W33M*	23156KW33M
	460	146,0	5,0	9,0	16,7	2650	4370	359,92	750	950	23156EW33MH**	23156EKW33MH
								Deliveries of	of bearings r	narked wi	th * must be agreed	with the producer.

Deliveries of bearings marked with * must be agreed with the producer.

** Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

Abutn	nent and	Fillet Din	nensions	Weight		Corresp.	Corresp.	Corresp.	Factors	;		
						Adapter	Withdrawal	Nut				
d	d _a	D _a	r _a		K	Sleeve	Sleeve		е	Y ₁	Y ₂	Y ₀
	min	max	max							-1	- 2	- 0
mm				kg								
200	214	326	2,5	40,50	39,200	H3140	AH3140	HM44T	0,30	2,2	3,3	2,2
	214	326	2,5	53,40	52,600	-	AH24140	HM42T	0,39	1,9	2,6	1,7
	218	342	3,0	43,00	42,000	H3140	AH2240	HM44T	0,25	2,6	3,9	2,6
	218	342	3,0	46,00	45,100	H3140	AH2240	HM44T	0,29	2,3	3,3	2,2
	218	342	3,0	58,60	56,700	H2340	AH3240	HM44T	0,36	1,9	2,8	1,8
	222	398	4,0	99,00	97,000	H2340	AH2340	HM44T	0,36	1,9	2,7	1,8
220	232	288	2,0	12,30	12,000	H3944	_	_	0,16	4,2	6,3	4,0
	234	326	2,5	29,20	28,300	H3044	AH3044	HML47T	0,24	2,9	4,3	2,8
	234	326	2,5	32,10	31,200	H3044	AH3044	HML47T	0,25	2,7	4,0	2,7
	234	326	2,5	29,60	28,700	H3044	AH3044	HML47T	0,24	2,9	4,3	2,8
	234	326	2,5	39,70	39,000	-	AOH24044	HM46T	0,32	2,3	3,1	2,1
	234	326	2,5	39,00	38,300	-	AOH24044	HM46T	0,32	2,3	3,1	2,1
	238	352	3,0	56,80	55,200	H3144	AH3144	HM48T	0,32	2,0	3,0	2,0
	238	352	3,0	50,80	49,200	H3144	AH3144	HM48T	0,30	2,3	3,4	2,2
	238	352	3,0	67,10	66,100	-	AOH24144	HM46T	0,38	1,8	2,6	1,7
	238	382	3,0	58,80	57,500	H3144	AH2244	HM48T	0,25	2,7	4,0	2,6
	238	382	3,0	63,00	61,000	H3144	AH2244	HM48T	0,28	2,4	3,4	2,2
	238	382	3,0	83,00	79,000	H2344	AH2344	HM48T	0,36	1,9	2,8	1,8
	242	438	4,0	125,00	122,000	H2344	AH2344	HM48T	0,35	1,9	2,8	1,8
240	252	308	2,0	13,30	13,000	H3948	_	-	0,15	4,5	6,7	4,5
	254	346	2,5	34,90	33,800	H3048	AH3048	HML52T	0,24	2,8	4,2	2,8
	254	346	2,5	32,00	31,000	H3048	AH3048	HML52T	0,23	3,0	4,5	2,9
	254	346	2,5	32,40	31,400	H3048	AH3048	HML52T	0,23	3,0	4,5	2,9
	254	346	2,5	42,80	42,100	-	AOH24048	HM50T	0,30	2,3	3,4	2,2
	258	382	3,0	68,70	66,700	H3148	AH3148	HM52T	0,32	2,1	3,0	2,0
	258	382	3,0	63,00	61,000	H3148	AH3148	HM52T	0,29	2,3	3,4	2,3
	258	382	3,0	82,50	81,300	-	AOH24148	HM50T	0,38	1,8	2,7	1,8
	258	422	3,0	80,00	78,200	H3148	AH2248	HM52T	0,26	2,6	3,9	2,6
	258	422	3,0	85,00	83,200	H3148	AH2248	HM52T	0,29	2,3	3,3	2,2
	258	422	3,0	111,00	108,000	H2348	AH2348	HM52T	0,35	1,9	2,9	1,8
	262	478	4,0	159,00	156,000	H2348	AH2348	HM52T	0,34	2,0	2,9	1,9
260	272	348	2,0	22,90	22,200	H3952	-		0,18	3,7	5,5	3,7
	278	382	3,0	45,80	44,400	H3052	AH3052	HM56T	0,23	2,9	4,3	2,9
	278	382	3,0	46,80	45,300	H3052	AH3052	HML56T	0,25	2,7	4,0	2,7
	278	385	3,0	65,00	63,900	-	AOH24052	HM54T	0,32	2,1	3,1	2,1
	278	422	3,0	90,50	87,800	H3152	AH3152	HM58T	0,32	2,0	3,1	2,0
	278	422	3,0	87,80	85,000	H3152	AH3152	HM58T	0,32	2,0	3,1	2,0
	278	422	3,0	115,00	113,000	-	AU10050	HM56T	0,39	1,8	2,6	1,7
	282	458	4,0	111,00	109,000	H3152	AH2252	HM58T	0,29	2,3	3,4	2,2
	282	458	4,0	147,00	142,000	H2352	AH2352	HM58T	0,37	1,8	2,6	1,7
000	288	512	5,0	196,00	192,000	H2352	AH2352	HM58T	0,34	2,0	2,9	1,9
280	292	368	2,0	25,00	24,200	H3956	AH20E6	- -	0,16	4,2	6,3	4,0
	298	402 402	3,0	54,50	52,900	H3056	AH3056	HM3060	0,24	2,7	4,0	2,6
	298 298	402	3,0	51,50 50,00	49,900	H3056 H3056	AH3056	HM3060 HM3060	0,22	3,0	4,5	3,0
			3,0		48,400	HJUDO	AH3056		0,22	3,0	4,5	3,0
	298 302	402 438	3,0	69,70	68,600	HO1EC	AOH 24056	HM62T	0,30	2,2	3,3	2,2
	302	438 478	4,0 4,0	103,00 95,00	99,000 91,000	H3156 H3156	AH3156 AH3156	HM62T	0,31 0,29	2,1 2,3	3,0 3,3	2,0 2,2
	322	4/0	4,0	90,00	91,000	113130	AUSISO	I IIVIOZ I	0,29	2,3	٥,٥	۷,۷

Double Row Spherical Roller Bearings d = 280 to 440 mm

Dime	nsions					Basic I	Load	Fatique load	Limiting S	peed	Bearing Designation	on
						Rating		limit	for Lubrica	tion with		
	_	_			l-		04-4				tale Outlined at a set	with Taxaband
d	D	В	r _s	а	b	Dyn.	Stat.	P _u	Grease	Oil	with Cylindrical	with Tapered
			min			C _r	C _{or}				Bore	Bore
mm						kN		kN	min-1			
280	460	146,0	5,0	9,0	16,7	2500	4470	368,16	750	950	23156CW33J	23156CKW33J
	460	180,0	5,0	7,5	13,9	3220	5630	463,70	400	500	24156EW33MH**	24156EK30W33MH
	500	130,0	5,0	12,0	22,3	2010	3200	259,43	630	750	22256W33M	22256KW33M
	500	176,0	5,0	12,0	22,3	2850	4770	386,71	560	670	23256W33M	23256KW33M
	580	175,0	6,0	12,0	22,3	3300	4940	388,93	600	750	22356CW33M	22356CKW33M
300	420	90,0	3,0	6,0	11,1	1500	2690	221,55	950	1300	23960EW33MH**	23960EKW33MH
	460	118,0	4,0	9,0	16,7	1780	3240	264,73	560	670	23060W33M*	23060KW33M
	460	118,0	4,0	9,0	16,7	2220	3720	303,94	800	1000	23060EW33MH**	23060EKW33MH
	460	118,0	4,0	9,0	16,7	2020	3720	303,94	800	1000	23060CW33J	23060CKW33J
	460	160,0	4,0	7,5	13,9	2800	5230	427,32	600	750	24060EW33MH**	24060EK30W33MH
	500 500	160,0 200,0	5,0 5.0	9,0 7,5	16,7 13,9	2560 3830	4490 6790	361,26 546,31	530 360	630 450	23160W33M 24160EW33MH**	23160KW33M 24160EK30W33MH
	540	140,0	5,0	12,0	22,3	2350	3810	302.09	560	670	22260W33M	22260KW33M
	540	192,0	5,0	12,0	22,3	3350	5570	441,64	500	600	23260W33M	23260KW33M
320	480	121,0	4,0	9,0	16,7	1890	3510	282,41	530	630	23064W33M	23064KW33M
320	480	121,0	4,0	9,0	16,7	2110	4090	329,07	750	950	23064CW33J	23064CKW33J
	480	160,0	4.0	7,5	13,9	2885	5500	442,52	560	700	24064EW33MH**	24064EK30W33MH
	540	176,0	5,0	12,0	22,3	3020	5390	424,36	500	600	23164W33M*	23164KW33M
	540	176,0	5,0	12,0	22,3	3780	6150	484,20	630	800	23164EW33MH**	23164EKW33MH
	540	176,0	5,0	12,0	22,3	3430	6150	484,20	630	800	23164CW33J	23164CKW33J
	540	218,0	5,0	9,0	16,7	4470	7870	619,61	340	430	24164EW33MH**	24164EK30W33MH
	580	150,0	5,0	12,0	22,3	2700	4430	344,05	530	630	22264W33M	22264KW33M
	580	208,0	5,0	12,0	22,3	3880	6520	506,37	450	530	23264W33M	23264KW33M
340	520	133,0	5,0	12,0	22,3	2320	4330	340,91	500	600	23068W33M	23068KW33M
	520	180,0	5,0	9,0	16,7	3550	6710	528,28	530	670	24068EW33MH**	24068EK30W33MH
	580	190,0	5,0	12,0	22,3	3510	6230	480,67	450	530	23168W33M*	23168KW33M
	580	190,0	5,0	12,0	22,3	4240	7080	536,22	600	750	23168EW33MH**	23168EKW33MH
	580	190,0	5,0	12,0	22,3	4020	7080	546,25	600	750	23168CW33J	23168CKW33J
000	620	224,0	6,0	12,0	22,3	4430	7560	575,88	420	500	23268W33M	23268KW33M
360	540 600	134,0 192,0	5,0 5,0	12,0 12,0	22,3 22,3	2360 3630	4460 6550	346,38 498,95	450 420	530 500	23072W33M 23172W33M	23072KW33M 23172KW33M
	600	243,0	5,0	9,0	16,7	5360	9970	759,47	300	380	24172EW33MH**	24172EK30W33MH
	650	232,0	6,0	12,0	22,3	4780	8550	641,45	400	500	23272CW33M	23272CKW33M
380	560	135,0	5,0	12,0	22,3	2410	4700	360,29	420	500	23076W33M	23076KW33M
000	560	180,0	5,0	9,0	16,7	3690	7420	568,80	480	600	24076EW33MH**	24076EK30W33MH
	620	194,0	5,0	12,0	22,3	3740	6970	524,48	400	470	23176W33M	23176KW33M
	620	243,0	5,0	9,0	16,7	5500	10490	789,35	280	360	24176EW33MH**	24176EK30W33MH
	680	240,0	6,0	12,0	22,3	5160	8920	659,58	380	480	23276W33M	23276KW33M
400	600	148,0	5,0	12,0	22,3	2860	5500	413,86	400	470	23080W33M	23080KW33M
	650	200,0	6,0	12,0	22,3	4040	7580	562,09	380	450	23180W33M	23180KW33M
	650	250,0	6,0	12,0	22,3	5960	11150	826,82	180	240	24180EW33MH**	24180EK30W33MH
	720	256,0	6,0	12,0	22,3	5800	10120	736,05	350	420	23280W33M	23280KW33M
	820	243,0	7,5	12,0	22,3	6350	10190	722,37	360	450	22380CW33M	22380CKW33M
420	620	150,0	5,0	12,0	22,3	2950	5850	435,05	380	450	23084W33M	23084KW33M
	700	224,0	6,0	12,0	22,3	5030	9740	708,42	360	450	23184CW33M	23184CKW33M
	700	280,0	6,0	12,0	22,3	6440	13480	980,44	170	220	24184EW33MH	24184EK30W33MH
440	760 650	272,0	7,5 6.0	12,0	22,3	6400 3210	11300	809,11	320 350	400 420	23284CW33M	23284CKW33M
440	000	157,0	0,0	12,0	22,3	3210	6410	470,03			23088W33M th * must be agreed	23088KW33M

Deliveries of bearings marked with * must be agreed with the producer. ** Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

EMH	
-----	--

Abutm	ent and	Fillet Din	nensions	Weight		Corresp.	Corresp.	Corresp.	Factors	;		
						Adapter	Withdrawal	Nut				
d	d _a	D _a	r _a		К	Sleeve	Sleeve		е	Y,	Υ,	Yo
	min	max	max	~						1	2	0
mm				kg								
280	302	438	4,0	93,90	90,800	H3156	AH3156	HM62T	0,29	2,3	3,5	2,3
	302	438	4,0	121,00	119,000	-	AOH24156	HM3160	0,37	1,8	2,7	1,8
	302	478	4,0	119,00	116,000	H3156	AH2256	HM62T	0,28	2,4	3,5	2,3
	302	478	4,0	157,00	152,000	H2356	AH2356	HM62T	0,36	1,9	2,7	1,8
	308	552	5,0	232,00	227,000	H2356	AH2356	HM62T	0,31	2,2	3,2	2,1
300	314	406	2,5	38,3	37,000	H3960	-	-	0,19	3,6	5,4	3,5
	318	442	3,0	75,80	73,600	H3060	AH3060	HM3064	0,25	2,7	3,8	2,5
	318	442	3,0	71,50	69,400	H3060	AH3060	HM3064	0,23	3,0	4,4	2,9
	318	442 442	3,0	69,6	67,500	H3060	AH3060	HM3064	0,23	3,0	4,4	2,9
	318 322	442	3,0	97,70	96,200	H2160	AOH24060	HM62T	0,32	2,1	3,2	2,1
	322	478	4,0 4,0	134,00 163,00	130,000 160,000	H3160	AH3160 AOH24160	HM66T HM3164	0,32	2,1 1,8	3,0 2,7	2,0 1,8
	322	518	4,0	150,00	147,000	H3160	AH2260	HM66T	0,37	2,5	3,6	2,4
	322	518	4,0	200,00	195,000	H3260	AH3260	HM66T	0,36	1,8	2,7	1,8
320	338	462	3,0	81,20	78,800	H3064	AH3064	HML69T	0,24	2,7	3,9	2,6
020	338	462	3,0	76,10	73,700	H3064	AH3064	HML69T	0,22	3,0	4,5	3,0
	338	462	3,0	103,00	101,500	_	AOH24064	HM66T	0,30	2,2	3,3	2,2
	342	518	4,0	175,00	170,000	H3164	AH3164	HM70T	0,32	2,0	3,0	2,0
	342	518	4,0	162,00	157,000	H3164	AH3164	HM70T	0,30	2,2	3,3	2,2
	342	518	4,0	160,00	155,000	H3164	AH3164	HM70T	0,30	2,2	3,3	2,2
	342	518	4,0	208,00	205,000	-	AOH24164	HM3168	0,38	1,8	2,6	1,7
	342	558	4,0	187,00	181,000	H3164	AH2264	HM70T	0,27	2,5	3,6	2,3
	342	558	4,0	253,00	246,000	H3264	AH3264	HM70T	0,37	1,8	2,6	1,7
340	362	498	4,0	108,00	105,000	H3068	AH3068	HML73T	0,25	2,7	3,9	2,6
	362	498	4,0	141,00	139,000	_	AOH24068	HM3072	0,33	2,0	3,0	2,0
	362	558	4,0	209,00	202,000	H3168	AH3168	HM74T	0,33	2,0	2,9	1,9
	362	558	4,0	206,00	199,000	H3168	AH3168	HM74T	0,30	2,2	3,3	2,2
	362	558 592	4,0	201,00	195,000	H3168	AH3168	HM74T	0,30	2,2 1,8	3,3	2,2
360	368 382	518	5,0 4,0	313,00 114,00	304,000 111,000	H3268 H3072	AH3268 AH3072	HM74T HML77T	0,37	2,8	2,6 4,0	2,6
300	382	578	4,0	232,00	224,000	H3172	AH3172	HM80T	0,24	2,0	3,0	2,0
	382	578	4,0	284,00	279,000	-	AOH24172		0,38	1,8	2,6	1,7
	388	622	5,0	342,00	332,000	H3272	AH3272G	HM3076	0,35	1,9	2,9	1,8
380	402	538	4,0	120,00	117,000	H3076	AH3076	HML82T	0,23	2,9	4,2	2,7
	402	538	4,0	154,00	152,000	_	AOH24076	HM3080	0,29	2,3	3,5	2,3
	402	598	4,0	244,00	237,000	H3176	AH3176	HM84T	0,31	2,2	3,1	2,1
	402	598	4,0	296,00	291,000	_	AOH24176	HM3180	0,36	1,9	2,8	1,8
	408	652	5,0	394,00	382,000	H3276	AH3276	HM84T	0,36	1,9	2,7	1,8
400	422	578	4,0	156,00	152,000	H3080	AH3080	HML86T	0,24	2,8	4,0	2,7
	428	622	5,0	273,00	265,000	H3180	AH3180	HM88T	0,30	2,2	3,2	2,1
	428	622	5,0	334,00	329,000	_	AH24180	HM3184	0,35	1,9	2,8	1,9
	428	692	5,0	476,00	463,000	H3280	AH3280	HM88T	0,36	1,8	2,7	1,8
100	436	784	6,0	629,00	612,000	-	-		0,30	2,2	3,3	2,2
420	442	598	4,0	164,00	159,000	H3084	AH3084	HML90T	0,23	2,9	4,1	2,7
	448	672	5,0	363,00	348,000	H3184	AH3184	HM92T	0,32	2,1	3,2	2,0
	448 456	672 724	5,0	445,00	438,000	H3284	AOH24184	HM3188	0,37	1,8 1,7	2,7	1,8
440	468	622	6,0 5.0	535,00	520,000		AH3284	HM92T HML94T	0,36	2.9	2,7 4.1	1,8 2,7
440	468	622	5,0	188,00	182,000	H3088	AH3088X	HIVIL941	0,23	2,9	4,1	2,7

Double Row Spherical Roller Bearings d = 440 to 850 mm

Dime	nsions					Basic L	.oad	Fatique load	Limiting S	peed	Bearing Designation	on
						Rating		limit	for Lubric	ation with		
d	D	В	r _s	а	b	Dyn.	Stat.	Pu	Grease	Oil	with Cylindrical	with Tapered
			min			C _r	C _{or}				Bore	Bore
mm						kN		kN	min-1			
440	720	226,0	6,0	12,0	22,3	4480	9350	672,93	330	400	23188W33M	23188KW33M
	790	280,0	7,5	12,0	22,3	6820	12030	850,73	320	380	23288W33M	23288KW33M
460	680	163,0	6,0	12,0	22,3	3480	7000	506,43	330	400	23092W33M	23092KW33M
	760	240,0	7,5	12,0	22,3	5720	10950	776,25	320	380	23192W33M	23192KW33M
	760	300,0	7,5	12,0	22,3	7370	15530	1100,93	160	200	24192EW33MH	24192EK30W33MH
480	700	165,0	6,0	12,0	22,3	3660	7490	536,31	320	380	23096W33M	23096KW33M
	790	248,0	7,5	12,0	22,3	6150	12000	840,50	300	380	23196W33M	23196KW33M
500	720	167,0	6,0	12,0	22,3	3830	7970	565,00	300	350	230/500W33M	230/500KW33M
	830	264,0	7,5	12,0	22,3	6800	13040	900,78	280	330	231/500W33M	231/500KW33M
	920	336,0	7,5	12,0	22,3	10380	18770	1271,37	240	320	232/500EW33MH	
530	780	185,0	6,0	12,0	22,3	4470	9310	646,05	280	330	230/530W33M	230/530KW33M
560	820	195,0	6,0	12,0	22,3	5110	10690	730,31	320	400	230/560CW33M	230/560CKW33M
600	870	200,0	6,0	12,0	22,3	5500	11420	765,54	260	300	230/600CW33M	230/600CKW33M
630	920	212,0	7,5	12,0	22,3	6270	13360	881,46	240	300	230/630W33M	230/630KW33M
	1030	315,0	7,5	12,0	22,3	9700	19600	1266,83	180	250	231/630W33M	231/630KW33M
670	980	230,0	7,5	12,0	22,3	6820	14690	951,20	200	280	230/670W33M	230/670KW33M
750	1360	475,0	15,0	12,0	22,3	18990	36950	2222,41	150	190	232/750CW33M	232/750CKW33M
	1360	475,0	15,0	12,0	22,3	18990	36950	2222,41	150	190	232/750CW33F	232/750CKW33F
800	1150	258,0	7,5	12,0	22,3	8620	19650	1210,17	180	220	230/800W33M	230/800KW33M
850	1220	272,0	7,5	12,0	22,3	9610	22080	1335,68	160	200	230/850W33M	230/850KW33M

Abutm	ent and	Fillet Din	nensions	Weight		Corresp. Adapter	Corresp. Withdrawal	Corresp. Nut	Factors	;		
d	d _a	D _a	r _a	~	K	Sleeve	Sleeve		е	Y ₁	Y_2	Y ₀
	min	max	max									
mm				kg								
440	468	692	5,0	390,00	379,000	H3188	AH3188X	HM96T	0,32	2,1	3,0	2,0
	476	754	6,0	613,00	595,000	H3288	AH3288X	HM96T	0,36	1,8	2,7	1,8
460	488	652	5,0	214,00	207,000	H3092	AH3092X	HML98T	0,23	2,9	4,2	2,8
	496	724	6,0	456,00	441,000	H3192	AH3192X	HM102T	0,31	2,1	3,1	2,0
	496	724	6,0	556,00	547,000		_	-	0,37	1,8	2,7	1,8
480	508	672	5,0	230,00	223,000	H3096	AH3096X	HML104T	0,23	2,9	4,4	2,9
	516	754	6,0	485,00	469,000	H3196	AH3196X	HM106T	0,31	2,2	3,1	2,1
500	528	692	5,0	236,00	228,000	H30/500	AH30/500X		0,22	3,0	4,3	2,9
	536	794	6,0	570,00	550,000	H31/500	AH31/500X		0,31	2,1	3,0	2,0
	536	884	6,0	976,00	946,000	H32/500	AH32/500X		0,35	1,9	2,9	1,9
530	558	752	5,0	323,00	314,000	H30/530	AH30/530	HML112T	0,22	3,0	4,3	2,9
560	588	792	5,0	357,00	346,000	H30/560	AH30/560	HML118T	0,22	3,1	4,6	3,0
600	633	838	5,0	405,00	400,000	H30/600	AH30/600	HM30/630	0,22	2,9	4,2	2,8
630	666	884	6,0	485,00	470,000	H30/630	AH30/630	HM30/670	0,21	3,1	4,5	2,9
070	666	994	6,0	1080,00	1070,000	H31/630	AH31/630	HM31/670	0,30	2,2	3,3	2,2
670	706	944	6,0	611,00	593,000	H30/670	AH30/670	HM30/710	0,23	3,0	4,4	2,9
750	815 815	1295 1295	12,0 12,0	3070,00 3020,00	2990,000 2930,000	H32/750 H32/750	AH32/750 AH32/750	HM31/800 HM31/800	0,34 0,34	2,0 2,0	2,9 2,9	1,9
800	836	1114	6,0	939,00	911,000	H30/800	AH30/800	HM30/850	0,34	3,1	4,5	3,0
850	886	1184	6,0	1110,00	1080,000	1130/000	AH30/850	HM30/900	0,21	3,1	4,5	3,0

Single Row Tapered Roller Bearings

Single Row Tapered Roller Bearings

A design with a great number of tapered rollers in one row enables these bearings to reach high load ratings both in radial and axial directions. Axial load can be applied only in one direction and its size depends on the contact angle size. Bearings with a greater contact angle (type 313 and 3238) are suitable for greater axial forces.

Single row tapered roller bearing arrangement is usually created by a pair of bearings because of bidirectional accommodation of axial load.

Bearings are produced in design with higher utilization parameters - designation A. Besides bearings in metric dimensions bearings in inch dimensions are also produced.

Boundary Dimensions

Boundary dimensions of metric single row tapered roller bearings comply with the standard ISO 355.

Boundary dimensions of single row tapered roller bearings in inch dimensions are according to the standard AFBMA Standard 19 (USA) from 1974.

Designation

Bearing designation of standard bearings is in the dimension tables of this publication.

Difference from basic design is indicated by additional symbols shown in section 2.2.

According to the dimensional plan ISO 355 the metric single row tapered roller bearing designation consists of letter and numerical symbols expressing following :

T bearing type
2, 3, 4, 5, 7 angle series of bearing
B, C, D, E, F, G diameter series of bearing
B, C, D, E width series of bearing
bore diameter in mm

For customer's and producer's orientation previous the designation is retained in the dimension tables and designation according to ISO is also shown.

The bearings designation in inch dimensions corresponds to usual way of designation of most producers of these bearings. The number preceding the slash indicates the cone with tapered rollers and cage, the number after the slash indicates the cup.

Cage

Single row tapered roller bearings have pressed steel cage which is not designated. Additional symbol J2 indicates a new cage design.

Tolerance

Bearings are commonly produced in normal tolerance class PO which is not indicated. For arrangements demanding more accuracy or working with high rotational speed, bearings in higher tolerance class P6, P6X and P5 are delivered. Delivery of bearings in P6X and P5 should be discussed in advance.

Internal Clearance

Single row tapered roller bearings are mounted in pairs, in which required clearance, or preload are adjusted at mounting. Clearance or preload size is determined according to arrangement's requirements.

Misalignment

Seating surface for single row tapered roller bearings must be aligned only with small deviations because ring misalignment is very small. By common operating conditions the misalignment is

- at small load (F, $< 0.1 C_{\rm nr}$) 1' to 1.5'
- at great load ($F_{i} \ge 0.1C_{i}$) 2' to 4'

Radial Equivalent Dynamic Load

$$P_r = F_r$$
 for $F_a/F_r \le e$ [kN]
 $P_r = 0.4F_r + YF_a$ for $F_a/F_r > e$ [kN]

Values of factors e and Y for individual bearings are shown in the dimension tables of this publication.

If the shaft is arranged in two single row tapered roller bearings additional inner axial force rises. Load magnitude of one bearing depends on load and contact angle of the second bearing. Additional inner forces must be taken into account by calculation. In the table relations for various bearing arrangements at acting outer axial force $K_{a'}$ radial $F_{rA'}$ F_{rB} loading bearing A and B are shown.

Radial forces act in the intersection of the contact line with bearing axis (dimensions "a", "s" are in the dimension tables) and in calculation are considered for positive even then, when they have reverse direction than in the picture.

Calculated force F_a is introduced to the calculation of radial equivalent dynamic load.

Radial Equivalent Static Load

$$P_{or} = 0.5F_r + Y_0F_a \qquad (P_{or} \ge F_r) \qquad [kN]$$

Values of Y_n factor for individual bearings are shown in the dimension tables of this publication.

Bearing Arrangement	Force Conditions	Bearing Axial Load	b
		Bearing A	Bearing B
A B B	$\frac{F_{rA}}{Y_A} \le \frac{F_{rB}}{Y_B}$ $K_a \ge 0$	$F_{aB} = \frac{0.5 \; F_{rB}}{Y_B}$	$F_{aA} = F_{aB} + K_{a}$
F _{FA} F _{FB}	$\begin{split} \frac{F_{rA}}{Y_A} > & \frac{F_{rB}}{Y_B} \\ K_a & \ge 0.5 \bigg(\frac{F_{rA}}{Y_A} - \frac{F_{rB}}{Y_B} \bigg) \end{split}$	$F_{aA} = F_{aB} + K_{a}$	$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$
F _{rB} F _{rA}	$\begin{split} \frac{F_{_{fA}}}{Y_{_{A}}} > & \frac{F_{_{fB}}}{Y_{_{B}}} \\ K_{_{a}} & \geqq 0.5 \left(\frac{F_{_{fB}}}{Y_{_{B}}} - \frac{F_{_{fA}}}{Y_{_{A}}}\right) \end{split}$	$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$	$F_{aB} = F_{aA} - K_{a}$
A B B	$\frac{F_{rA}}{Y_A} \geqq \frac{F_{rB}}{Y_B}$ $K_a \geqq 0$	$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$	$F_{aB} = F_{aA} + K_a$
V F _{FA} F _{FB} V	$\begin{split} \frac{F_{_{fA}}}{Y_{_{A}}} < & \frac{F_{_{fB}}}{Y_{_{B}}} \\ K_{_{a}} \ge & 0.5 \left(\frac{F_{_{fB}}}{Y_{_{B}}} - \frac{F_{_{rA}}}{Y_{_{A}}} \right) \end{split}$	$F_{aA} = \frac{0.5 F_{rA}}{Y_A}$	$\boldsymbol{F}_{aB} = \boldsymbol{F}_{aA} + \boldsymbol{K}_{a}$
F _{FB}	$\begin{split} \frac{F_{rA}}{Y_A} < \frac{F_{rB}}{Y_B} \\ K_a < 0.5 \left(\frac{F_{rB}}{Y_B} + \frac{F_{rA}}{Y_A} \right)^{1)} \end{split}$	$F_{\scriptscriptstyleaA}=F_{\scriptscriptstyleaB}-K_{\scriptscriptstylea}$	$F_{aB} = \frac{0.5 \; F_{rB}}{Y_B}$
¹⁾ Valid for $K_a = 0$			

Single Row Tapered Roller Bearings d = 15 to 45 mm

Dime	ensions								Basic Loa	d Rating	Fatique load	Limiting S	Speed
									Dynamic	Static	limit	for Lubric	ation with
d	D	В	С	Т	r _{1s} min	r _{2s} min	r _{3s} min	а	C _r	C _{or}	P _u	Grease	Oil
mm									kN		kN	min ⁻¹	
15	42	13	11.0	14.25	1.0	1.0			21.9	19.02	2.32	10000	14000
17	47	14	12.0	15.25	1.0	1.0	0.3	11	25.1	22.80	2.78	10000	13000
20	42	15	12.0	15.00	0.6	0.6	0.3	10	22.8	29.00	3.54	9000	13000
	47	14	12.0	15.25	1.0	1.0	0.3	11	25.1	26.10	3.18	8900	12000
	52	15	13.0	16.25	1.5	1.5	0.6	11	30.4	29.90	3.65	8400	11000
	52	21	18.0	22.25	1.5	1.5	0.6	13	43.8	45.50	5.55	8400	11000
25	47	15	11.5	15.00	0.6	0.6	0.3	12	24.2	28.70	3.50	8400	11000
	52	15	13.0	16.25	1.0	1.0	0.3	12	29.9	33.50	4.09	7500	10000
	52	18	16.0	19.25	1.0	1.0			36.4	43.20	5.27	7900	11000
	52	22	18.0	22.00	1.0	1.0			48.9	58.50	7.13	7900	10000
	62	17	15.0	18.25	1.5	1.5	0.6	13	43.8	42.10	5.13	6900	9200
	62	17	15.0	18.25	1.5	1.5	0.6	13	39.8	38.30	4.67	7100	9400
	62	17	13.0	18.25	1.5	1.5	0.6	20	36.2	39.10	4.77	6700	8900
	62	24	20.0	25.25	1.5	1.5	0.6	15	57.3	60.70	7.40	6700	8900
30	55	17	13.0	17.00	1.0	1.0	0.3	13	35.5	43.80	5.34	7100	9400
	62	16	14.0	17.25	1.0	1.0	0.3	14	39.3	42.80	5.22	6500	8700
	62	16	14.0	17.25	1.0	1.0	0.3	14	40.6	44.70	5.45	6700	8900
	62	20	17.0	21.25	1.0	1.0	0.3	15	50.1	59.60	7.27	6700	8900
	72	19	16.0	20.75	1.5	1.5	0.6	15	53.1	53.10	6.48	5600	7500
	72	19	14.0	20.75	1.5	1.5	0.6	23	46.4	50.10	6.11	5300	7100
	72	27	23.0	28.75	1.5	1.5	0.6	20	76.4	85.80	10.46	5600	7500
32	58	17	13.0	17.00	1.0	1.0	0.3	14	39.8	48.20	5.88	7100	9400
35	62	18	14.0	18.00	1.0	1.0	0.3	15	43.0	53.10	6.48	6300	8400
00	72	17	15.0	18.25	1.5	1.5	0.6	15	46.4	51.10	6.23	5300	7100
	72	23	19.0	24.25	1.5	1.5	0.6	17	64.3	76.40	9.32	5300	7100
	80	21	18.0	22.75	2.0	1.5	0.6	16	65.6	69.40	8.46	5000	6700
	80	21	15.0	22.75	2.0	1.5	0.6	26	57.3	63.10	7.70	4700	6300
	80	31	25.0	32.75	2.0	1.5	0.6	20	94.4	110.00	13.41	4700	6300
40	68	19	14.5	19.00			0.6	15					
+0		-			1.0	1.0		-	48.2	64.30	7.84	5300	7100
	80	18	16.0	19.75	1.5	1.5	0.6	17	55.2	60.70	7.40	4700	6300
	80	23	19.0	24.75	1.5	1.5	0.6	18	70.8	85.50	10.43	4700	6300
	90	23	20.0	25.25	2.0	1.5	0.6	18	84.3	93.20	11.37	4500	6000
	90	23	20.0	25.25	2.0	1.5	0.6	19	82.5	94.40	11.51	4500	6000
	90	23	17.0	25.25	2.0	1.5	0.6	29	76.4	85.80	10.46	4000	5300
	90	33	27.0	35.25	2.0	1.5	0.6	22	114.0	141.00	17.20	4200	5600
	90	33	27.0	35.25	2.0	1.5	0.6	27	104.2	136.60	16.66	4100	5400
	90	33	27.0	35.25	2.0	1.5	0.6	27	104.0	144.00	17.56	4200	5600
45	75	20	15.5	20.00	1.0	1.0	0.3	17	57.3	79.40	9.68	4700	6300
	85	19	16.0	20.75	1.5	1.5	0.6	18	61.9	70.80	8.63	4500	6000
	85	23	19.0	24.75	1.5	1.5	0.6	20	73.6	90.90	11.09	4500	6000
	100	25	22.0	27.25	2.0	1.5	0.6	21	107.0	118.00	14.39	4000	5300
	100	25	22.0	27.25	2.0	1.5	0.6	21	104.0	117.00	14.27	4000	5300
	100	25	18.0	27.25	2.0	1.5	0.6	32	92.6	104.00	12.68	3800	5000

Bearing Desi	gnation	Abu	tment a	nd Fillet	Dimensio	ons					Weight	Factor	rs	
STN	ISO	d	d	d	D _a	D _a	D							
SIN	100	u	d _a max	d _b min	min	max	D _b min	a _a min	a _b min	r _a max		e	Υ	V
			IIIax	111111		IIIax		1111111		IIIax		-		Y ₀
		mm									kg			
30302F		15	22	21	35.0	36	38.0	2	3.0	1.0	0.100	0.32	2.11	
30302F 30303AJ2	T2FB017	17	25	23	39.0	41	42.0	2	3.0	1.0	0.100	0.32	2.10	1.20
32004AX	T3CC020	20	25	25	36.0	37	39.0	3	3.0	0.6	0.140	0.23	1.60	0.90
30204A	T2DB020		26	26	39.0	41	43.0	2	3.0	1.0	0.136	0.35	1.70	1.00
30304A	T2FB020		27	27	43.0	45	47.0	2	3.0	1.0	0.179	0.30	2.00	1.10
32304A	T2FD020		27	27	43.0	45	47.0	2	4.0	1.0	0.267	0.30	2.00	1.10
32005AX	T4CC025	25	30	31	40.5	42	44.0	3	3.5	0.6	0.117	0.43	1.40	0.80
30205A	T3CC025		31	31	43.0	46	48.0	2	3.0	1.0	0.167	0.37	1.60	0.90
32205F			31	31	43.0	46	48.0	2	3.0	1.0	0.200	0.36	1.03	
33205F			30	31	43.0	46	49.0	4	4.0	1.0	0.225	0.35	1.71	
30305A	T2FB025		33	32	53.0	55	57.0	2	3.0	1.0	0.288	0.30	2.00	1.10
30305AJ2	T2FB025		33	32	53.0	55	57.0	2	3.0	1.0	0.265	0.30	2.00	1.10
31305A	T7FB025		33	32	46.0	55	59.0	2	5.0	1.0	0.271	0.83	0.70	0.40
32305A	T2FD025		33	32	53.0	55	57.0	2	5.0	1.0	0.404	0.30	2.00	1.10
32006AX	T4CC030	30	35	36	47.5	49	52.0	3	4.0	1.0	0.181	0.43	1.40	0.80
30206A	T3DB030		37	36	52.0	56	57.0	2	3.0	1.0	0.252	0.37	1.60	0.90
30206AJ2	T3DB030		37	36	52.0	56	57.0	2	3.0	1.0	0.252	0.37	1.60	0.90
32206A	T3DC030		37	36	52.0	56	58.5	2	4.0	1.0	0.320	0.37	1.60	0.90
30306A	T2FB030		38	37	61.0	65	66.0	2	4.5	1.0	0.419	0.32	1.90	1.10
31306AJ2	T7FB030		39	37	55.0	65	68.0	2	6.5	1.0	0.390	0.83	0.70	0.40
32306A	T2FD030		38	37	61.0	65	66.0	2	5.5	1.0	0.628	0.32	1.90	1.10
320/32AX	T4CC032	32	38	38	50.0	52	55.0	3	4.0	1.0	0.196	0.45	1.30	0.70
32007AX	T4CC035	35	40	41	54.0	56	59.0	4	4.0	1.0	0.243	0.45	1.30	0.70
30207A 32207A	T3DB035		43 43	42 42	61.0	65 65	67.0 68.5	3	3.0 5.0	1.0	0.361 0.480	0.37	1.60	0.90
30307A	T3DC035 T2FB035			44	61.0	71	74.0	3		1.0			1.60	0.90
31307AJ2	T7FB035		43 43	44	68.0 61.0	71	76.0	3	4.5 7.5	1.5 1.5	0.551 0.520	0.32	0.70	0.40
32307A32	T2FE035		43	44	68.0	71	74.0	3	7.5	1.5	0.827	0.83	1.90	1.10
32008AX	T3CD040	40	45	46	60.0	62	65.0	4	4.5	1.0	0.827	0.32	1.60	0.90
30208A	T3DB040	0	48	47	68.0	73	75.5	3	3.5	1.0	0.452	0.37	1.60	0.90
32208A	T3DC040		48	47	68.0	73	75.0	3	5.5	1.0	0.594	0.37	1.60	0.90
30308A	T2FB040		50	49	76.0	81	82.0	3	5.0	1.5	0.773	0.35	1.70	1.00
30308AJ2	T2FB040		50	49	76.0	81	82.0	3	5.0	1.5	0.773	0.35	1.70	1.00
31308A	T7FB040		50	49	70.0	81	86.0	3	8.0	1.5	0.776	0.83	0.70	0.40
32308A	T2FD040		50	49	76.0	81	82.0	3	8.0	1.5	1.120	0.35	1.70	1.00
32308BA	T5FD040		50	49	70.0	81	85.0	4	8.0	1.5	1.110	0.54	1.10	0.60
32308BAJ2	T5FD040		50	49	70.0	81	85.0	4	8.0	1.5	0.990	0.54	1.10	0.60
32009AX	T3CC045	45	50	51	66.0	69	72.0	4	4.5	1.0	0.355	0.39	1.50	0.80
30209A	T3DB045		53	52	73.0	78	80.0	3	4.5	1.0	0.527	0.41	1.50	0.80
32209A	T3DC045		53	52	73.0	78	81.5	3	5.5	1.0	0.641	0.41	1.50	0.80
30309A	T2FB045		56	54	85.0	91	92.0	3	5.0	1.5	1.040	0.35	1.70	1.00
30309AJ2	T2FB045		56	54	85.0	91	92.0	3	5.0	1.5	1.040	0.35	1.70	1.00
31309A	T7FB045		55	54	78.0	91	95.0	3	9.0	1.5	1.030	0.83	0.70	0.40

Single Row Tapered Roller Bearings d = 45 to 75 mm

Dime	nsions	sions							Basic Load	d Rating	Fatique load	Limiting S	speed
									Dynamic	Static	limit	for Lubric	ation with
d	D	В	С	Т	r _{1s}	r _{2s}	r _{as}	а	C _r	C _{or}	Pu	Grease	Oil
					min	min	min						
mm									kN		kN	min ⁻¹	
45	100	00	30.0	38.25	2.0	1.5	0.6	25	144.0	181.0	22.07	3800	5000
45	100	36 36	30.0	38.25	2.0	1.5	0.6	31	131.0	181.0	21.22	3800	5000
50	80	20	15.5	20.00	1.0	1.0	0.8	18	59.6	87.4	10.66	4500	6000
50	90	20	17.0	21.75	1.5	1.5	0.6	20	70.8	87.4	10.66	4200	5600
	90	23	19.0	24.75	1.5	1.5		21			12.44		
	110	27		29.25	2.5	2.0	0.6		81.0 121.0	102.0	17.20	4200	5600
		27	23.0		2.5	2.0		23		141.0		3800	5000
	110		19.0	29.25			0.6	35	102.0	114.0	13.90	3300	4500
	110	40	33.0	42.25	2.5	2.0	0.6	27	174.0	224.0	27.32	3300	4500
	110	40	33.0	42.25	2.5	2.0	0.6	33	156.0	212.0	25.85	3200	4400
55	90	23	17.5	23.00	1.5	1.5	0.6	20	76.4	108.0	13.17	4000	5300
	100	21	18.0	22.75	2.0	1.5	0.6	21	81.0	96.2	11.73	3800	5000
	100	25	21.0	26.75	2.0	1.5	0.6	22	102.0	128.0	15.61	3800	5000
	120	29	25.0	31.50	2.5	2.0	0.6	25	136.0	162.0	19.76	3300	4500
	120	29	21.0	31.50	2.5	2.0	0.6	38	117.0	136.0	16.59	3000	4000
	120	43	35.0	45.50	2.5	2.0	0.6	29	200.0	256.0	31.22	3300	4500
60	95	23	17.5	23.00	1.5	1.5	0.6	21	81.0	119.0	14.51	3800	5000
	110	22	19.0	23.75	2.0	1.5	0.6	22	94.4	117.0	14.27	3300	4500
	110	28	24.0	29.75	2.0	1.5	0.6	25	126.0	162.0	19.76	3300	4500
	130	31	26.0	33.50	3.0	2.5	1.0	26	162.0	188.0	22.93	3000	4000
	130	31	22.0	33.50	3.0	2.5	1.0	41	136.0	158.0	19.27	2800	3800
	130	46	37.0	48.50	3.0	2.5	1.0	31	228.0	299.0	36.46	2800	3800
	130	46	37.0	48.50	3.0	2.5	1.0	39	200.0	293.0	35.73	2500	3300
65	100	23	17.5	23.00	1.5	1.5	0.6	23	81.0	123.0	15.00	3300	4500
	110	34	26.5	34.00	1.5	1.5	0.6	26	136.0	207.0	25.24	3800	5300
	120	23	20.0	24.75	2.0	1.5	0.6	24	112.0	136.0	16.59	3000	4000
	120	31	27.0	32.75	2.0	1.5	0.6	28	150.0	200.0	24.39	3000	4000
	120	41	32.0	41.00	2.0	1.5	0.6	30	191.0	267.0	32.56	3000	4000
	140	33	28.0	36.00	3.0	2.5	1.0	28	185.0	220.0	26.63	2800	3800
	140	33	23.0	36.00	3.0	2.5	1.0	44	150.0	178.0	21.55	2800	3800
	140	48	39.0	51.00	3.0	2.5	1.0	33	261.0	331.0	40.07	2800	3800
70	110	25	19.0	25.00	1.5	1.5	0.6	24	98.1	147.0	17.93	3300	4500
. •	125	24	21.0	26.25	2.0	1.5	0.6	26	121.0	153.0	18.66	3000	4000
	125	31	27.0	33.25	2.0	1.5	0.6	29	155.0	203.0	24.76	2800	3800
	150	35	30.0	38.00	3.0	2.5	1.0	30	211.0	251.0	29.75	2700	3500
	150	35	25.0	38.00	3.0	2.5	1.0	47	178.0	211.0	25.01	2700	3500
	150	51	42.0	54.00	3.0	2.5	1.0	36	293.0	398.0	47.17	2700	3500
75	115	25	19.0	25.00	1.5	1.5	0.6	25	104.0	158.0	19.27	3000	4000
/5			22.0		2.0	1.5		-					
	130	25		27.25			0.6	28	128.0	165.0	19.97	2800	3800
	130	31	27.0	33.25	2.0	1.5	0.6	30	162.0	220.0	26.63	2800	3800
	130	41	31.0	41.00	2.0	1.5	0.6	32	196.0	299.0	36.19	2800	3800
	160	37	31.0	40.00	3.0	2.5	1.0	32	242.0	287.0	33.35	2500	3300
	160	55	45.0	58.00	3.0	2.5	1.0	38	341.0	464.0	53.91	2400	3200
	160	55	45.0	58.00	3.0	2.5	1.0	47	304.0	464.0	53.91	2000	2700

Bearing Desi	gnation	Abu	tment a	nd Fillet	Dimensi	ons					Weight	Factor	's	
STN	ISO	d	d _a	d _b	D _a	D _a	D _b	a _a	$a_{_{\!\scriptscriptstyle b}}$	r _a				
			max	min	min	max	min	min	min	max	~	е	Υ	Y ₀
		mm			-						kg			
32309A	T2FD045	45	56	54	85	91	93.0	3	8.0	1.5	1.530	0.35	1.70	1.00
32309BAJ2	T5FD045		55	54	76	91	94.0	5	8.0	1.5	1.540	0.54	1.10	0.60
32010AX	T3CC050	50	55	56	71	74	77.0	4	4.5	1.0	0.395	0.42	1.40	0.80
30210A	T3DB050		58	57	78	83	86.5	3	4.5	1.0	0.602	0.42	1.40	0.80
32210A	T3DC050		58	57	78	83	85.0	3	5.5	1.0	0.667	0.42	1.40	0.80
30310A	T2FB050		62	60	94	100	102.0	3	6.0	2.0	1.320	0.35	1.70	1.00
31310A	T7FB050		61	60	85	100	104.0	3	10.0	2.0	1.290	0.83	0.70	0.40
32310A	T2FD050		62	60	94	100	102.0	3	9.0	2.0	2.010	0.35	1.70	1.00
32310BA	T5FD050		62	60	83	100	103.0	5	9.0	2.0	1.990	0.54	1.10	0.60
32011AX	T3CC055	55	61	62	80	83	86.0	4	5.5	1.0	0.592	0.41	1.50	0.80
30211A	T3DB055		63	64	87	91	94.0	4	4.5	1.5	0.759	0.41	1.50	0.80
32211A	T3DC055		63	64	87	91	95.0	4	5.5	1.5	0.915	0.41	1.50	0.80
30311A	T2FB055		67	65	103	110	111.0	4	6.5	2.0	1.710	0.35	1.70	1.00
31311A	T7FB055		67	65	92	110	113.0	4	10.5	2.0	1.630	0.83	0.70	0.40
32311A	T2FD055		67	65	103	110	111.0	4	10.5	2.0	2.500	0.35	1.70	1.00
32012AX	T4CC060	60	66	67	85	88	91.0	4	5.5	1.0	0.632	0.43	1.40	0.80
30212A	T3EB060		69	69	95	101	105.5	4	4.5	1.5	0.967	0.41	1.50	0.80
32212A	T3EC060		69	69	95	101	104.0	4	5.5	1.5	1.270	0.41	1.50	0.80
30312A	T2FB060		73	72	112	118	120.0	4	7.5	2.0	2.090	0.35	1.70	1.00
31312A	T7FB060		72	72	103	118	123.0	4	11.5	2.0	2.030	0.83	0.70	0.40
32312A	T2FD060		73	72	112	118	120.0	4	11.5	2.0	3.070	0.35	1.70	1.00
32312B	T5FD060	0.5	73	72	99	118	122.0	6	11.5	2.0	3.160	0.54	1.10	0.60
32013AX	T4CC065	65	71	72	90	93	97.0	4	5.5	1.0	0.675	0.46	1.30	0.70
33113A 30213A	T3DE065 T3EB065		74	72 74	96	103	106.0	6 4	7.5	1.0	1.300 1.230	0.39	1.50	0.80
			75		105	111	113.0		4.5	1.5		0.41	1.50	0.80
32213A 33213A	T3EC065 T3EE065		75 75	74 74	105 102	111 111	115.0 115.0	4 6	5.5 9.0	1.5	1.660	0.41	1.50	0.80
30313A	T2GB065		80	77	121	128	130.0	4	8.0	1.5 2.0	2.060 2.550	0.39	1.70	1.00
31313A	T7GB065		78	77	109	128	132.0	4	13.0	2.0	2.450	0.83	0.70	0.40
32313A	T2GD065		80	77	121	128	130.0	4	12.0	2.0	3.770	0.85	1.70	1.00
32014AX	T4CC070	70	77	77	98	103	105.0	5	6.0	1.5	0.893	0.35	1.40	0.80
30214AX	T3EB070	70	80	79	108	116	118.0	4	5.0	1.5	1.370	0.44	1.40	0.80
32214A	T3EC070		80	79	108	116	119.0	4	6.0	1.5	1.730	0.42	1.40	0.80
30314A	T2GB070		85	82	129	138	140.0	4	8.0	2.0	3.070	0.42	1.70	1.00
31314A	T7GB070		83	82	118	138	141.0	4	13.0	2.0	3.010	0.83	0.70	0.40
32314A	T2GD070		85	82	129	138	140.0	4	12.0	2.0	4.550	0.35	1.70	1.00
32015AX	T4CC075	75	82	82	103	108	110.0	5	6.0	1.0	0.955	0.46	1.30	0.70
30215A	T4DB075	75	85	84	113	121	124.0	4	5.0	1.5	1.470	0.40	1.40	0.80
32215A	T4DC075		85	84	113	121	121.0	4	6.0	1.5	1.820	0.44	1.40	0.80
33215A	T3EE075		85	84	111	121	125.0	6	10.0	1.5	2.300	0.43	1.40	0.80
30315A	T2GB075		91	87	138	148	149.0	4	9.0	2.0	3.720	0.45	1.70	1.00
32315A	T2GD075		91	87	138	148	149.0	4	13.0	2.0	5.620	0.35	1.70	1.00
32315B	T5GD075		90	87	128	148	150.0	7	12.5	2.0	5.600	0.54	1.10	0.60
010101	.005013		00	O/	120	1-10	100.0		12.0	2.0	0.000	0.07	1.10	0.00

Single Row Tapered Roller Bearings d = 80 to 140 mm

Dime	nsions								Basic Load	d Rating	Fatique load	Limiting S	peed
									Dynamic	Static	limit	for Lubrica	ation with
d	D	В	С	Т	r _{1s} min	r _{2s} min	r _{3s} min	а	C _r	C _{or}	P _u	Grease	Oil
mm									kN		kN	min ⁻¹	
80	125	29	22.0	29.00	1.5	1.5	0.6	27	131.0	207.0	25.06	2800	3800
00	130	37	29.0	37.00	2.0	1.5	0.6	31	190.0	300.0	36.05	3200	4200
	140	26	22.0	28.25	2.5	2.0	0.6	29	144.0	178.0	21.10	2800	3800
	140	33	28.0	35.25	2.5	2.0	0.6	32	181.0	251.0	29.75	2800	3800
85	130	29	22.0	29.00	1.5	1.5	0.6	28	136.0	215.0	25.66	2800	3800
	130	36	29.5	36.00	1.5	1.5	0.6	26	195.0	319.0	38.07	3000	4000
	150	28	24.0	30.50	2.5	2.0	0.6	30	181.0	207.0	24.05	2700	3500
	150	36	30.0	38.50	2.5	2.0	0.6	34	212.4	290.2	33.72	2400	3300
	150	36	30.0	38.50	2.5	2.0	0.6	34	237.0	293.0	34.04	2700	3500
	150	49	37.0	49.00	2.5	2.0	0.6	37	278.0	418.0	48.57	2200	3200
90	140	32	24.0	32.00	2.0	1.5	0.6	30	150.0	228.0	26.66	2700	3500
	140	39	32.5	39.00	2.0	1.5	0.6	28	223.0	370.0	43.27	2800	3800
	150	45	35.0	45.00	2.5	2.0	0.6	36	265.0	420.0	48.49	2800	3800
	160	30	26.0	32.50	2.5	2.0	0.6	31	185.0	242.0	27.60	2400	3200
	160	40	34.0	42.50	2.5	2.0	0.6	37	251.0	355.0	40.49	2400	3200
95	145	32	24.0	32.00	2.0	1.5	0.6	31	174.0	280.0	32.33	2700	3500
	145	39	32.5	39.00	2.0	1.5	0.6	29	228.0	385.0	44.45	2700	3500
	170	32	27.0	34.50	3.0	2.5	1.0	33	214.0	272.0	30.49	2000	2900
	170	43	37.0	45.50	3.0	2.5	1.0	38	310.0	437.0	48.98	2700	3500
100	150	32	24.0	32.00	2.0	1.5	0.6	33	178.0	261.0	29.77	2800	3800
	150	39	32.5	39.00	2.0	1.5	0.6	29	234.0	400.0	45.62	2500	3300
	180	34	29.0	37.00	3.0	2.5	1.0	37	266.0	346.0	38.14	2500	3300
	180	46	39.0	49.00	3.0	2.5	1.0	41	348.0	496.0	54.68	2500	3300
105	160	35	26.0	35.00	2.5	2.0	0.6	35	205.0	337.0	37.77	2600	3400
	160	43	34.0	43.00	2.5	2.0	0.6	31	260.0	445.0	49.87	2400	3200
	190	36	30.0	39.00	3.0	2.5	1.0	37	293.0	387.0	42.00	2400	3200
	190	50	43.0	53.00	3.0	2.5	1.0	44	393.0	570.0	61.86	2400	3200
110	170	38	29.0	38.00	2.5	2.0	0.6	37	246.0	390.0	42.99	2500	3300
	170	47	37.0	47.00	2.5	2.0	0.6	33	300.0	520.0	57.33	2200	3000
	200	38	32.0	41.00	3.0	2.5	1.0	39	304.0	402.0	42.98	1800	2500
	200	53	46.0	56.00	3.0	2.5	1.0	46	433.0	630.0	67.36	2200	3000
120	180	38	29.0	38.00	2.5	2.0	0.6	40	254.0	430.0	46.43	2400	3200
	215	40	34.0	43.50	3.0	2.5	1.0	43	339.0	452.0	47.22	1600	2200
	215	58	50.0	61.50	3.0	2.5	1.0	52	462.0	685.0	71.56	1600	2200
130	200	45	34.0	45.00	2.5	2.0	0.6	43	330.0	560.0	58.77	2100	2800
140	210	45	34.0	45.00	2.5	2.0	0.6	46	335.0	580.0	59.80	1700	2200

Bearing Des	signation	Abut	tment a	nd Fillet	Dimensi	ons					Weight	Factor	rs	
STN	ISO	d	d _a	d₅ min	D _a	D _a	D _b	a _a min	a _b	r _a max	~	e	Y	Y _o
		mm	max			IIIdx				IIIdx	kg			0
32016AX	T3CC080	80	87	87	112	118	120.0	6	7.0	1.0	1.320	0.42	1.40	0.80
33116A	T3DE080		89	89	114	121	126.0	6	8.0	1.5	1.930	0.42	1.40	0.80
30216A	T3EB080		90	90	122	130	132.0	4	6.0	2.0	1.750	0.42	1.40	0.80
32216A	T3EC080		90	90	122	130	134.0	4	7.0	2.0	2.290	0.42	1.40	0.80
32017AX	T4CC085	85	92	92	117	123	125.0	6	7.0	1.0	1.410	0.44	1.40	0.70
33017A	T2CE085		92	93	117	123	125.0	6	6.5	1.0	1.730	0.29	2.10	1.10
30217A	T3EB085		96	95	132	140	141.0	5	6.0	2.0	2.140	0.42	1.40	0.80
32217A	T3EC085		96	95	130	140	142.0	5	8.5	2.0	2.850	0.42	1.40	0.80
32217AJ2	T3EC085		96	95	130	140	142.0	5	8.5	2.0	2.850	0.42	1.40	0.80
33217A	T3EE085		96	95	128	140	144.0	7	12.0	2.0	3.690	0.42	1.40	0.80
32018AX	T3CC090	90	99	99	124	131	134.0	6	8.0	1.5	1.780	0.42	1.40	0.80
33018A	T2CE090		99	99	124	131	135.0	6	6.5	1.5	2.250	0.27	2.20	1.20
33118A	T3DE090		101	100	130	140	144.0	7	10.0	2.0	3.200	0.40	1.50	0.80
30218A	T3FB090		102	100	138	150	150.0	5	6.0	2.0	2.710	0.42	1.40	0.80
32218A	T3FC090		102	100	138	150	152.0	5	8.5	2.0	3.600	0.42	1.40	0.80
32019AX	T4CC095	95	105	104	130	136	139.0	6	8.0	1.5	1.870	0.44	1.40	0.80
33019A	T2CE095		103	104	130	136	139.0	6	6.5	1.5	2.340	0.28	2.10	1.20
30219A	T3FB095		107	110	148	158	159.0	5	7.0	2.0	3.160	0.42	1.40	0.80
32219A	T3FC095		107	110	148	158	161.0	5	10.0	2.0	4.320	0.42	1.40	0.80
32020AX	T4CC100	100	109	109	134	141	144.0	6	8.0	1.5	1.940	0.46	1.30	0.70
33020A	T2CE100		109	110	134	141	144.0	6	6.5	1.5	2.470	0.28	2.10	1.10
30220A	T3FB100		114	112	155	168	168.0	5	8.0	2.0	3.810	0.42	1.40	0.80
32220A	T3FC100		114	112	155	168	171.0	5	10.0	2.0	5.210	0.42	1.40	0.80
32021AX	T4DC105	105	116	115	143	150	154.0	6	9.0	2.0	2.510	0.44	1.40	0.70
33021A	T2DE105		116	116	143	150	153.0	6	9.0	2.0	3.060	0.28	2.10	1.20
30221A	T3FB105		120	117	163	178	178.0	8	9.0	2.0	4.940	0.42	1.40	0.80
32221A	T3FC105		120	117	163	178	178.0	6	10.0	2.0	6.380	0.42	1.40	0.80
32022AX	T4DC110	110	120	120	152	160	163.0	6	9.0	2.0	3.090	0.43	1.40	0.80
33022A	T2DE110		121	121	150	159	160.0	6	10.0	2.0	3.870	0.29	2.10	1.20
30222A	T3FB110		125	122	171	188	187.0	8	9.0	2.0	5.320	0.44	1.40	0.80
32222A	T3FC110		125	122	171	188	190.0	6	10.0	2.0	7.560	0.44	1.40	0.80
32024AX	T4DC120	120	130	130	162	170	173.0	6	9.0	2.0	3.320	0.46	1.30	0.70
30224A	T4FB120		135	132	187	203	201.0	9	9.0	2.0	6.330	0.44	1.40	0.80
32224A	T4FD120		135	132	184	203	204.0	9	11.5	2.0	9.420	0.44	1.40	0.80
32026AX	T4EC130	130	140	140	178	190	192.0	8	11.0	2.0	5.050	0.44	1.40	0.80
32028AX	T4DC140	140	150	150	186	200	202.0	8	11.0	2.0	5.260	0.46	1.30	0.70

Single Row Tapered Roller Bearings in Inch Dimensions d = 15.875 to 38.100 mm

Dimens	ions										Basic Load	Rating Static	Fatique load limit	Limiting Sp for Lubrica	
d	D	D ₁	В	С	C ₁	Т	T,	r _{1s} min	r _{2s} min	s	C _r	C _{or}	P _u	Grease	Oil
mm											kN		kN	min ⁻¹	
15.88	42.86		14.288	9.525		14.288		1.50	1.50	1.30	17.30	18.60	2.27	9500	14000
16.00	47.00		21.000	16.000		21.000		1.00	2.00	6.00	36.90	40.60	4.95	8400	11000
17.46	39.88		14.605	10.670		13.843		1.30	1.30	4.80	21.10	21.50	2.62	10000	13000
19.05	45.24		16.637	12.065		15.494		1.30	1.30	5.60	25.60	26.60	3.24	8900	12000
21.99	45.24		16.637	12.065		15.494		1.20	1.20	5.30	28.70	29.90	3.65	8400	11000
22.00	45.00	51.5	16.637	12.065	3.000	15.494	6.43	1.20	1.20	5.40	28.70	29.90	3.65	8400	11000
25.40	50.29		14.732	10.668		14.224		1.30	1.30	3.30	24.60	28.70	3.50	7500	10000
*	50.29		14.732	10.668		14.224		1.30	1.30	3.30	24.60	28.70	3.50	7500	10000
	59.93		23.114	18.288		23.368		0.80	1.57	5.10	44.70	66.80	8.15	5600	7500
26.99	50.29		14.732	10.668		14.224		3.56	1.30	3.30	24.60	28.70	3.50	7500	10000
29.00	50.29		14.732	10.668		14.224		3.60	1.20	3.20	25.60	33.50	4.09	7100	9400
30.00	62.00	68.5	18.100	15.536	3.556	17.250	5.27	1.00	1.50	3.30	44.70	44.70	5.45	6700	8900
30.16	64.29		21.433	16.670		21.433		1.57	1.57	3.30	44.70	59.60	7.27	5600	7500
31.75	59.13		16.764	11.811		15.875		4.75	1.30	2.90	31.60	38.30	4.67	6700	8900
	62.00		19.050	14.288		18.161		4.75	1.30	5.20	47.30	58.40	7.12	6300	8400
34.93	65.09		18.288	13.970		18.034		4.75	1.30	3.70	43.00	53.10	6.48	5600	7500
	73.03		24.608			23.813		3.56	2.36	6.60	57.30	76.40	9.32	5300	6700
35.00	60.00		16.764	11.938		15.875		4.75	1.30	2.50	31.60	42.20	5.15	6300	8400
38.00	63.00		17.000	13.500		17.000		1.50	1.50	2.30	42.20	55.20	6.73	6700	8900
38.10	65.09		18.288	13.970		18.034		2.30	1.10	5.00	49.20	60.70	7.40	5600	7500

Bearing	Abutr	nent ar	nd Fille	t Dime	nsions					Weight	Dimei		Facto	ors					
Designation																			
Cone/	d	d _b	D _a	D _a	D _b	a,	a,	r,	r _b	~	Δdmp	,	ΔDmp	,	ΔTs				
					_		_		_									V	V
Cup	max	min	min	max	min	min	min	max	max		max	min	max	min	max	min	е	Υ	Y ₀
	mm									kg	μm								
K-11590/	22.5	24.5	34.5	35.0	39.5	2.0	4.5	1.5	1.5	0.063	+13	0	+25	0	+200	0	0.70	0.90	0.50
K-11520																			
K-HM81649/	23.0	22.0	36.0	39.0	43.0	2.0	4.0	1.0	1.5	0.199	0	-13	0	-25	+200	0	0.55	1.10	0.60
K-HM81610 K-LM11749/	23.0	24.0	33.5	35.0	37.0	2.0	3.0	1.0	1.0	0.186	+13	0	+15	0	+200	0	0.29	0.10	1.20
K-LW11749/ K-HM11710	23.0	24.0	33.5	35.0	37.0	2.0	3.0	1.0	1.0	0.186	+13	U	+15	U	+200	U	0.29	2.10	1.20
K-LM11949/	25.0	25.5	38.0	38.5	41.0	3.0	3.0	1.0	1.0	0.121	+20	0	+25	0	+356	0	0.30	2.00	1.10
K-LM11910	20.0	20.0	00.0	00.0	41.0	0.0	0.0	1.0	1.0	0.121	120	U	120	U	1000	U	0.00	2.00	1.10
K-LM12749/	26.0	27.5	38.0	38.5	42.5	3.0	3.0	1.2	1.2	0.119	+13	0	0	+15	+200	0	0.31	1.96	1.00
K-LM12710																			
K-LM12749/	26.0	27.5	-	-	46.0	1.2	3.5	1.3	-	0.129	-13	0	0	-15	+200	0	0.31	1.96	1.10
K-LM12712B																			
K-L44643/	33.0	32.0	43.5	43.5	47.0	2.0	3.5	1.0	1.0	0.128	+13	0	+25	0	+200	0	0.37	1.60	0.90
K-L44610																			
K-L44643/	33.0	32.0	43.5	43.5	-	2.0	-	1.0	1.0	0.130	+13	0	+25	0	+200	0	0.37	1.60	0.90
K-L44610/																			
K-L44600LA	00.0	00.0	40.0	F0.0	F0.0	0.0		0.0	4.0	0.007	40	_	0.5	0	000	^	0.55	4.40	0.00
K-M84249/ K-M84210	33.0	32.0	46.0	53.0	56.0	3.0	4.5	0.6	1.0	0.327	+13	0	+25	0	+200	U	0.55	1.10	0.60
K-W64210 K-L44649/	33.0	38.0	43.5	45.0	47.0	3.0	3.5	3.0	1.0	0.120	+20	0	+25	0	+356	0	0.37	1.60	0.90
K-L44610	33.0	30.0	40.0	45.0	47.0	3.0	3.3	3.0	1.0	0.120	+20	U	+23	U	+330	U	0.57	1.00	0.90
K-L45449/	34.0	40.0	43.5	45.0	47.0	3.0	3.5	3.0	1.0	0.113	+13	0	+15	0	+200	0	0.37	1.60	0.90
K-L45410																Ť			
K-JXC25640CB/	34.5	37.0	-	-	59.0	1.2	1.7	1.5	-	0.269	0	-12	+20	0	+200	0	0.37	1.60	0.90
K-JXC25640D																			
K-M86649/	38.0	38.0	51.0	56.5	60.0	3.0	4.5	1.0	1.0	0.341	+13	0	+25	0	+200	0	0.55	1.10	0.60
K-M86610																			
K-LM67048/	38.0	44.5	51.0	52.0	55.0	3.0	4.0	3.0	1.0	0.180	+13	0	+25	0	+356	0	0.41	1.50	0.80
K-LM67010	00.0	40.5	F4.0	FF 6	F0.0	4.0	0.5	0.0	4.0	0.040	40		05	0	000	0	0.05	4.70	0.00
K-15123/ K-15245	38.0	43.5	54.0	55.0	58.0	4.0	3.5	3.0	1.0	0.248	+13	0	+25	0	+203	0	0.35	1.70	0.90
K-15245 K-LM48548/	42.0	47.0	57.0	58.0	61.0	3.0	4.0	3.0	1.0	0.244	+20	0	+25	0	+356	0	0.36	1.60	0.90
K-LM48510	42.0	47.0	57.0	36.0	01.0	3.0	4.0	3.0	1.0	0.244	+20	U	+20	U	+300	U	0.38	1.60	0.90
PLC65-3	43.0	45.0	62.0	64.0	68.0	3.0	3.0	5.0	2.0	0.495	+13	0	+25	0	+200	0	0.37	1.60	0.90
K-L68149/	40.0	46.0	52.0	54.0	56.0	3.0	3.5	3.0	1.0	0.176	0	-20	0	-25		0			0.80
K-L68111											Ū								,
K-JL69349/	41.0	49.0	56.5	57.0	60.0	1.5	3.5	1.5	1.5	0.204	+13	0	+25	0	+200	0	0.42	1.44	0.79
K-JL69310																			
K-LM29749/	42.5	46.0	58.0	60.0	62.0	4.0	4.0	2.3	1.3	0.240	+13	0	+25	0	+200	0	0.33	1.80	1.00
K-LM29710																			

Single Row Tapered Roller Bearings in Inch Dimensions d = 39.688 to 146.05 mm

Martic M	Dimens	ions										Basic Load	d Rating	Fatique	Limiting S	peed
mm												Dynamic	Static	load limit	for Lubrica	tion with
39.69 80.17 30.391 23.813 29.370 0.80 3.20 11.10 81.00 104.00 12.68 4200 5600 40.00 80.00 22.403 17.826 21.000 0.80 1.30 6.00 70.80 73.60 8.98 4700 6300 40.10 67.98 18.000 13.500 17.500 3.60 1.50 3.60 47.30 59.60 7.27 5300 7100 44.45 83.06 25.400 19.050 23.813 3.56 3.20 6.10 59.60 87.40 10.66 4200 5600 45.24 77.79 19.842 15.800 19.842 1.00 1.00 2.30 59.60 77.90 9.50 4900 6500 50.00 82.00 21.500 17.000 21.500 3.00 0.50 5.30 75.20 104.00 12.68 4500 6000 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4500	d	D	D ₁	В	С	C ₁	Т	Т,			S	C _r	C _{or}	P _u	Grease	Oil
40.00 80.00 22.403 17.826 21.000 0.80 1.30 6.00 70.80 73.60 8.98 4700 6300 40.10 67.98 18.000 13.500 17.500 3.60 1.50 3.60 47.30 59.60 7.27 5300 7100 44.45 83.06 25.400 19.050 23.813 3.56 3.20 6.10 59.60 87.40 10.66 4200 5600 45.24 77.79 19.842 15.800 19.842 1.00 1.00 2.30 59.60 77.90 9.50 4900 6500 50.00 82.00 21.500 17.000 21.500 3.00 0.50 5.30 75.20 104.00 12.68 4500 6000 50.80 101.60 36.068 29.988 34.925 0.80 3.20 12.70 123.00 162.00 19.76 3200 4200 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4500	mm											kN		kN	min ⁻¹	
40.10 67.98 18.000 13.500 17.500 3.60 1.50 3.60 47.30 59.60 7.27 5300 7100 44.45 83.06 25.400 19.050 23.813 3.56 3.20 6.10 59.60 87.40 10.66 4200 5600 45.24 77.79 19.842 15.800 19.842 1.00 1.00 2.30 59.60 77.90 9.50 4900 6500 50.00 82.00 21.500 17.000 21.500 3.00 0.50 5.30 75.20 104.00 12.68 4500 6000 50.80 101.60 36.068 29.988 34.925 0.80 3.20 12.70 123.00 162.00 19.76 3200 4200 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4500 88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 300 <	39.69	80.17		30.391	23.813		29.370		0.80	3.20	11.10	81.00	104.00	12.68	4200	5600
44.45 83.06 25.400 19.050 23.813 3.56 3.20 6.10 59.60 87.40 10.66 4200 5600 45.24 77.79 19.842 15.800 19.842 1.00 1.00 2.30 59.60 77.90 9.50 4900 6500 50.00 82.00 21.500 17.000 21.500 3.00 0.50 5.30 75.20 104.00 12.68 4500 6000 50.80 101.60 36.068 29.988 34.925 0.80 3.20 12.70 123.00 162.00 19.76 3200 4200 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4000 65.00 110.00 28.000 22.500 28.000 3.00 2.50 4.00 133.00 188.00 22.93 3300 4500 88.90 152.40 39.688 30.68 6.40 3.30 35.00 230.00 344.00 39.65 2000 3000 89.97 146.98 40.000	40.00	80.00		22.403	17.826		21.000		0.80	1.30	6.00	70.80	73.60	8.98	4700	6300
45.24 77.79 19.842 15.800 19.842 1.00 1.00 2.30 59.60 77.90 9.50 4900 6500 50.00 82.00 21.500 17.000 21.500 3.00 0.50 5.30 75.20 104.00 12.68 4500 6000 50.80 101.60 36.068 29.988 34.925 0.80 3.20 12.70 123.00 162.00 19.76 3200 4200 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4000 65.00 110.00 28.000 22.500 28.000 3.00 2.50 4.00 133.00 188.00 22.93 3300 4500 88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 300 89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3200 <td>40.10</td> <td>67.98</td> <td></td> <td>18.000</td> <td>13.500</td> <td></td> <td>17.500</td> <td></td> <td>3.60</td> <td>1.50</td> <td>3.60</td> <td>47.30</td> <td>59.60</td> <td>7.27</td> <td>5300</td> <td>7100</td>	40.10	67.98		18.000	13.500		17.500		3.60	1.50	3.60	47.30	59.60	7.27	5300	7100
50.00 82.00 21.500 17.000 21.500 3.00 0.50 5.30 75.20 104.00 12.68 4500 6000 50.80 101.60 36.068 29.988 34.925 0.80 3.20 12.70 123.00 162.00 19.76 3200 4200 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4000 65.00 110.00 28.000 22.500 28.000 3.00 2.50 4.00 133.00 188.00 22.93 3300 4500 88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 3000 89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3300 90.00 145.00 34.000 27.000 35.000	44.45	83.06		25.400	19.050		23.813		3.56	3.20	6.10	59.60	87.40	10.66	4200	5600
50.80 101.60 36.068 29.988 34.925 0.80 3.20 12.70 123.00 162.00 19.76 3200 4200 57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4000 65.00 110.00 28.000 22.500 28.000 3.00 2.50 4.00 133.00 188.00 22.93 3300 4500 88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 3000 89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3300 90.00 145.00 34.000 27.000 35.000 6.00 2.50 33.00 213.00 315.00 36.60 2200 3200	45.24	77.79		19.842	15.800		19.842		1.00	1.00	2.30	59.60	77.90	9.50	4900	6500
57.15 127.00 44.450 34.925 44.450 3.50 3.30 9.40 228.00 276.00 33.66 3000 4000 65.00 110.00 28.000 22.500 28.000 3.00 2.50 4.00 133.00 188.00 22.93 3300 4500 88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 3000 89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3300 90.00 145.00 34.000 27.000 35.000 6.00 2.50 33.00 213.00 315.00 36.60 2200 3200	50.00	82.00		21.500	17.000		21.500		3.00	0.50	5.30	75.20	104.00	12.68	4500	6000
65.00 110.00 28.000 22.500 28.000 3.00 2.50 4.00 133.00 188.00 22.93 3300 4500 88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 3000 89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3300 90.00 145.00 34.000 27.000 35.000 6.00 2.50 33.00 213.00 315.00 36.60 2200 3200	50.80	101.60		36.068	29.988		34.925		0.80	3.20	12.70	123.00	162.00	19.76	3200	4200
88.90 152.40 39.688 30.162 39.688 6.40 3.30 35.00 230.00 344.00 39.65 2000 3000 89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3300 90.00 145.00 34.000 27.000 35.000 6.00 2.50 33.00 213.00 315.00 36.60 2200 3200	57.15	127.00		44.450	34.925		44.450		3.50	3.30	9.40	228.00	276.00	33.66	3000	4000
89.97 146.98 40.000 32.500 40.000 7.00 3.50 31.00 243.00 365.00 42.30 2400 3300 90.00 145.00 34.000 27.000 35.000 6.00 2.50 33.00 213.00 315.00 36.60 2200 3200	65.00	110.00		28.000	22.500		28.000		3.00	2.50	4.00	133.00	188.00	22.93	3300	4500
90.00 145.00 34.000 27.000 35.000 6.00 2.50 33.00 213.00 315.00 36.60 2200 3200	88.90	152.40		39.688	30.162		39.688		6.40	3.30	35.00	230.00	344.00	39.65	2000	3000
	89.97	146.98		40.000	32.500		40.000		7.00	3.50	31.00	243.00	365.00	42.30	2400	3300
146.05 193.68 28.575 23.020 28.575 5.80 1.50 34.00 181.00 390.00 40.57 1700 2200	90.00	145.00		34.000	27.000		35.000		6.00	2.50	33.00	213.00	315.00	36.60	2200	3200
	146.05	193.68		28.575	23.020		28.575		5.80	1.50	34.00	181.00	390.00	40.57	1700	2200

Bearing	Abutn	nent an	d Fille	t Dime	nsions					Weight	Dimen	sion	Deviatio	ns			Facto	ors	
Designation																			
Cone/	da	d _b	D _a	D _a	D _b	a _a	a _b	r _a	r _b	~	Δdmp		ΔDmp		ΔTs				
Cup	max	min	min	max	min	min	min	max	max		max	min	max	min	max	min	е	Υ	Y ₀
	mm									kg	μm								- 0
										Ng	μιιι								
K-3386/	48.0	47.0	68.0		70.0	75.0	3.0	4.0	0.6	0.704	+13	0	+25	0	+200	0	0.27	2.20	1.20
K-3320																	•		
K-344A/	48.0	47.0	68.0		73.0	75.0	3.0	4.0	0.6	0.514	+13	0	+25	0	+203	0	0.27	2.20	1.20
K-332																			
K-LM300849/	45.0	52.0	58.0		61.0	63.0	4.0	4.0	0.6	0.230	+13	0	+25	0	+200	0	0.35	1.70	1.00
K-LM300811																			
K-25580/	53.0	56.5	71.0		74.0	73.0	5.0	4.5	3.0	0.541	+13	0	+25	0	+200	0	0.33	1.80	1.00
K-25521																			
LM603049/ LM603011	50.0	57.0	71.0		72.0	74.0	4.5	5.5	1.0	0.378	+13	0	+25	0	+100	0	0.43	1.41	0.77
K-JLM104948/	55.0	60.0	76.0		77.0	78.0	4 0	4.5	3.0	0.410	-12	0	-18	0	+100	0	0.31	1 10	1.08
K-JLM104910	00.0	00.0	70.0		77.0	70.0	4.0	4.0	0.0	0.410	- 12	U	10	Ū	1 100	U	0.01	1.10	1.00
K-529/	61.0	63.5	87.0		89.5	94.0	6.0	7.5	0.6	1.220	+13	0	+25	0	+200	0	0.28	2.10	1.20
K-522																			
K-65225/	71.0	80.0	104.0		107.0	119.0	10.0	10.0	3.5	2.790	+13	0	+25	0	+200	0	0.49	1.20	0.70
K-65500																			
K-JM511946/	71.0	77.0	93.0		96.0	101.0	9.5	9.5	3.0	1.050	-15	0	-15	0	+200	0	0.39	1.50	0.90
K-JM511910																			
K-HM518445/	98.0	112.0	124.0		135.0	142.0	6.0	10.0	3.5	2.880	+25	0	+25	0	+200	0	0.44	1.36	0.74
K-HM518410																			
K-HM218248/	99.0	112.0	128.0		133.0	141.0	6.0	7.5	3.5	2.590	+25	0	+25	0	+200	0	0.33	1.80	0.99
K-HM218210 K-JM718149/	99.0	111.0	106.0		121.0	140.0	6.0	8.0	2.5	2.150	+25	0	+25	0	+200	0	0.44	1 25	0.74
K-JM718110	99.0	111.0	120.0		131.0	140.0	0.0	0.0	2.5	2.150	+23	U	+20	U	+200	U	0.44	1.33	0.74
K-36691/	155.0	162.0	176.0		182.0	187.0	6.0	6.5	1.5	2.310	+25	0	+25	0	+356	-254	0.37	1 60	0.90
K-36620	100.0	102.0	17 0.0		102.0	107.0	0.0	0.0		2.0.0	.20		0		1000		0.07		0.00

Single Row Tapered Roller Bearings in Inch Dimensions d = 15,875 to 39,688 mm $\,$

Dimens	ions										Basic Load	d Rating	Fatique	Limiting S	peed
											Dynamic	Static	load limit	for Lubric	ation with
d	D	D,	В	С	C,	Т	T,	r _{1s}	r _{2s}	s	C _r	C _{or}	P _u	Grease	Oil
								min	min						
mm											kN		kN	min ⁻¹	
15.875	42.862		14.288	9.525	5	14.288	}	1.5	1.5		17.8	17.7	2.16	10000	14000
19.050	49.225		19.050	14.288	3	18.034	1	1.3	1.3		37.7	37.7	4.60	8900	12000
	49.225		19.050	17.462	2	21.209)	1.3	1.5		37.7	37.7	4.60	8900	12000
	49.225		21.539	14.288	3	19.845	5	1.5	1.3		37.7	37.7	4.60	8900	12000
25.400	57.150		19.431	14.732	2	19.431		1.5	1.5		44.9	52.9	6.45	6400	8600
	62.000		20.638	15.875	5	19.050)	8.0	1.3		44.6	50.7	6.18	6400	8600
	63.500		20.638	15.875	5	20.638	3	8.0	1.5		44.6	50.7	6.18	6400	8600
26.988	62.000		20.638	14.288	3	19.050)	0.8	1.3		44.6	50.7	6.18	6400	8600
28.575	68.262		22.225	17.462	2	22.225	5	0.8	1.5		51.0	61.1	7.45	6000	8000
	73.025		22.225	17.462	2	22.225	5	8.0	3.3		55.0	65.7	8.01	5500	7400
29.000	50.292		14.732	10.668	3	14.224		3.5	1.3		28.9	37.2	4.54	7600	10000
30.162	64.292		21.433	16.670)	21.433	3	1.5	1.5		55.2	70.7	8.62	6400	8500
30.213	62.000		20.638	14.288	3	19.050)	3.5	1.3		44.6	50.7	6.18	6400	8600
31.750	59.131		16.764	11.811		15.875	;		1.2		35.8	43.1	5.26	6600	8800
	62.000		20.638	14.288	3	19.050)	0.8	1.3		44.6	50.7	6.18	6400	8600
	63.500		19.050	15.875	5	20.638	3		1.5		44.6	50.7	6.18	6400	8600
	69.012		19.583	15.875	5	19.845	5	3.5	3.3		46.1	55.0	6.71	5900	7800
33.338	68.262		22.225	17.462	2	22.225	5	0.8	1.5		56.1	71.1	8.67	6000	7900
34.925	69.012		19.583	15.875	5	19.845	5	3.5	3.3		46.1	55.0	6.71	5900	7800
	69.012		19.583	15.875	5	19.845	5	3.5	1.3		46.1	55.0	6.71	5900	7800
	72.233		25.400	19.842	2	25.400)	2.3	2.3		66.9	87.4	10.66	5700	7600
	73.025		24.608	19.050)	23.812	!	1.5	2.3		72.2	87.3	10.65	5600	7400
	73.025		24.608	19.050)	23.812		1.5	8.0		72.2	87.3	10.65	5600	7400
	76.200		28.575	23.812	2	29.370)	1.5	3.3		80.9	97.4	11.88	5400	7200
34.988	61.973		17.000	13.600)	16.700)		1.5		39.4	52.4	6.39	5600	7500
35.000	59.975		18.412	11.938	3	15.875	i	2.5	1.3		36.0	48.6	5.93	6400	8500
	65.000		20.600	17.000	1	18.100		2.3	1.3		45.7	53.1	6.48	5500	7400
36.487	76.200		25.654			23.812		1.5	3.3		81.1	105.0	12.80	5000	6700
36.512	76.200		28.575			29.370		3.5	3.3		79.5	107.0	13.05	5400	7200
38.100	65.088		18.288			18.034		0.0	1.3		42.9	56.5	6.89	5800	7800
30.100	65.088		18.288			18.034		2.3	1.3		42.9	56.5	6.89	5800	7800
	65.088		18.288			19.812		2.3	1.3		42.9	56.5	6.89	5800	7800
	69.012		19.050			19.050		3.5	2.3		49.2	62.0	7.56	5600	7500
	76.200		25.654			23.812		3.5	3.3		81.1	105.0	12.80	5000	6700
	82.550		28.575			29.370		0.8	3.3		87.3	117.0	14.27	4900	6600
	32.000		20.070	_0.0_		20.070		0.0	0.0		0				-0000
	88.500		29.083	22.22	5	26.988	3	3.5	1.5		98.2	112.0	13.66	4900	6500
39.688	73.025		22.098	18.500)	19.395	;	2.3	1.3		53.0	66.3	8.09	5200	6900
	79.967		22.098	22 001	1	19.395	,	2.3	1.3		66.3	53.0	6.46	5200	6900

Bearing	Abutr	nent a	nd Fille	t Dime	nsions					Weight	Dimen	ision l	Deviatio	ns			Facto	ors	
Designation																			
Cone/	d	d	n	D _a	n	2	2			~	Δdmp		ΔDmp		ΔTs				
	d _a	d _b	D _a		D _b	a _a	a _b	r _a	r _b									.,	
Cup	max	min	min	max	min	min	min	max	max		max	min	max	min	max	min	е	Υ	Y ₀
	mm									kg	μm								
44500/44500	00.5	04.5	045		00.5	0.0				0.40	40	_	0.5	•	000	•	0.70	0.05	4.00
11590/11520	22.5	24.5	34.5		39.5	2.0	4.5	1.5	1.5	0.10	+13	0	+25	0	+203	0		0.85	1.20
09067/09195 09067/09196	24.0	25.5	42.0		44.5 44.5	4.0	4.5	1.3	1.3	0.17	+13	0	+25	0	+203	0		2.26	1.00
09067/09196	24.0	25.5 26.0	41.5 42.0		44.5	1.0	4.5 4.5	1.3	1.5	0.19	+13	0	+25 +25	0	+203	0	-	2.26	1.20
M84548/84510	33.0	36.0	48.5		54.0	2.5	5.0	1.5	1.5	0.16	+13	0	+25	0	+203	0	0.27	1.10	1.00
15101/15245	31.5	32.5	55.0		58.0	5.0	5.0	0.8	1.3	0.29	+13	0	+25	0		0		1.71	1.00
15101/15243 15101/15250X	31.5	32.5	55.0		59.0	3.0	5.0	0.8	1.5	0.32	+13	0	+25	0		0	0.35	1.71	1.00
15106/15245	33.0	33.5	55.0		58.0	5.0	5.0	0.8	1.3	0.28	+13	0	+25	0	+203	0	0.35	1.71	
02474/0220	36.0	36.5	59.0		63.0	3.0	5.5	0.8	1.5	0.40	+13	0	+25	0	+203	0	0.42		0.77
02872/02820	37.0	37.5	62.0		68.0	3.0	5.0	0.8	3.3	1.04	+13	0	+25	0	+203	0	0.45	1.32	
F15029/L45410	33.0	39.5	44.5		48.0	4.0	3.5	4.0	3.5	0.11	+13	0	+25	0	+203	0	0.37	1.62	1.08
M86649/86610	38.2	41.0	54.0		61.0	3.0	5.3	1.5	1.5	0.33	+13	0	+25	0	+203	0	0.55	1.10	
15118/15245	35.5	41.5	55.0		58.0	5.0	5.0	3.5	1.3	0.26	+13	0	+25	0	+203	0	0.35	1.71	1.20
LM67048 RS	36.0	42.5	52.0		56.0	4.5	3.5		1.2	0.17	+13	0	+25	0	+203	0	0.41	1.46	
/67010																			0.70
151126/15245	36.5	37.0	55.0		58.0	5.0	5.0	8.0	1.3	0.25	+13	0	+25	0	+203	0	0.35	1.71	
15123/15250X	31.5	32.5	55.0		59.0	3.0	5.0	8.0	1.5	0.32	+13	0	+25	0	+203	0	0.35	1.71	0.90
14125A/14274	40.0	46.0	60.0		63.0	3.0	4.5	3.5	1.3	0.32	+13	0	+25	0	+203	0	0.38	1.57	
M88048/88010	41.0	42.5	58.0		65.0	3.0	4.0	0.8	1.5	0.37	+13	0	+25	0	+203	0	0.55	1.10	0.74
14138A/14274	40.0	46.0	60.0		63.0	3.0	4.5	3.5	1.3	0.32	+13	0	+25	0	+203	0	0.38	1.57	
14138A/14276	40.0	46.0	60.0		63.0	3.0	4.5	3.5	1.3	0.32	+13	0	+25	0	+203	0	0.38	1.57	0.99
HM88649	42.5	48.5	60.0		69.0	4.0	5.5	2.3	2.3	0.50	+13	0	+25	0	+203	0	0.55	1.10	
/88610	40.5	40.0	04.0		00.0			4.5	0.0	0.40	40	_	0.5	_	000	^	0.00	0.07	0.74
25877/25820	40.5	43.0	64.0		68.0	4.5	5.5	1.5	2.3	0.46	+13	0	+25	0		0	0.29		0.00
25877/25821 31594/31520	40.5	43.0 46.0	65.0 64.0		68.0 72.0	4.5 2.5	5.5	1.5	0.8	0.46	+13	0	+25 +25	0	+203	0	0.29	1.49	0.90
LM78349	40.0	46.0	54.0		59.0	3.0	4.0	1.0	1.5	0.02	0	-13	+25	-25	+203	0	0.40	1.35	
/78310A	40.0	40.0	34.0		39.0	3.0	4.0		1.5	0.19	U	-13	U	-25	+203	U	0.44	1.33	
F15036	45.5	39.0	53.0		56.0	4.0	3.0	2.5	1.3	0.19	+13	0	+25	0	+203	0	0.42	1 44	
/JL68111Z	40.0	00.0	00.0		00.0	4.0	0.0	2.0	1.0	0.10	110	Ū	120	Ū	1200	U	0.42	11-1	
U298/U261+collar																			
2780/2720	42.5	44.5	66.0		70.0	5.0	5.0	1.5	3.3	0.52	+13	0	+25	0	+203	0	0.30	1.98	
HM89449/89410	44.5	54.0	62.0		73.0	3.0	5.5	3.5	3.3	0.62	+13	0	+25	0	+203	0	0.55	1.10	
LM29748/29710	42.5	49.0	59.0		62.0	3.0	4.5		1.3	0.22	+13	0	+25	0	+203	0	0.33	1.80	
LM29749/29710	42.5	46.0	59.0		62.0	3.0	4.5	2.3	1.3	0.22	+13	0	+25	0	+203	0	0.33	1.80	
LM29749/29711	42.5	46.0	58.0		62.0	1.5	4.5	2.3	1.3	0.24	+13	0	+25	0	+203	0	0.33	1.80	
13685/13621	43.0	49.5	61.0		65.0	2.5	4.0	3.5	2.3	0.28	+13	0	+25	0	+203	0	0.40	1.49	
2788/2720	43.5	50.0	66.0		70.0	5.0	5.0	3.5	3.3	0.49	+13	0	+25	0	+203	0	0.30	1.98	
HM801346	49.1	51.0	68.0		78.0	3.0	6.0	0.8	3.3	0.76	+13	0	+25	0	+203	0	0.55	1.10	
/801310																			
418/414	44.5	51.0	77.0		80.0	5.0	6.0	3.5	1.5	0.82	+13	0	+25	0	+203	0	0.26	2.28	
U399/U360+collar																			
U399/U365+collar																			

Single Row Tapered Roller Bearings in Inch Dimensions d = 40.988 to 50.800 mm

Dimens	ions										Basic Loa	d Rating	Fatique	Limiting S	Speed
											Dynamic	Static	load limit	for Lubric	ation with
d	D	D,	В	С	C ₁	Т	T,	r _{is}	r _{2s}	s	C _r	C _{or}	Pu	Grease	Oil
								min	min						
mm											kN		kN	min ⁻¹	
40.988	67.975		18 000	13.500		17.500		**	1.5		46.1	63.5		5400	7200
40.000	07.070		10.000	10.000		17.000			1.0		40.1	00.0		0400	7200
41.275	73.025		17.462	12.700		16.667		3.5	1.5		45.9	55.8	6.80	5200	6900
	73.431		19.812	14.732		19.558		3.5	8.0		57.8	73.0	8.90	5200	7000
	73.431		19.812	16.604		21.430		3.5	0.8		57.8	73.0	8.90	5200	7000
	76.200		23.020	17.462		22.225		3.5	0.8		66.3	83.3	10.16	5200	6900
	87.312			23.812		30.162		1.5	3.3		95.8	120.0	14.63	4600	6200
	88.900		29.370	23.020		30.162		3.5	3.3		99.6	125.0	15.24	4600	6100
42.875	82.931		25,400	19.050		23.812		3.5	0.8		77.2	100.0	12.20	4800	6300
42.075	82.931			22.225		26.988		3.5	2.3		77.2	100.0	12.20	4800	6300
	83.058		25.400			23.812		3.5	3.3		77.2	100.0	12.20	4800	6300
44.450	104.775			28.575		36.512		3.5	3.3		141.0	195.0	23.78	3800	5100
	83.058		25.400	19.114		23.876		3.5	2.0		77.2	100.0	12.20	4800	6300
	88.900		29.370	23.020		30.162		3.6	3.2		99.6	125.0	15.24	4600	6100
	93.264		30.302	23.812		30.162		3.5	3.3		103.0	137.0	16.71	4200	5500
	95.250		28.575	22.225		30.958		3.5	8.0		99.7	120.0	14.63	3700	5100
45.000	80.000		26 000	22.000		24.000		2.3	1.3		61.2	79.0	9.63	4500	6100
45.230	79.985		20.638			19.842		2.0	1.3		62.0	78.5	9.63	4800	6400
45.242	73.431			15.748		19.558		3.5	0.8		55.6	78.1	9.52	5100	6700
									0.0						
	77.788		19.842	15.080		19.842		3.6	8.0		57.1	73.5	8.96	4900	6500
	77 700		10.010	40.007		04 400		0.0	0.0		574	70.5	0.00	4000	0500
	77.788		19.842	16.667		21.430		3.6	8.0		57.1	73.5	8.96	4900	6500
45.618	82.931		25.400			26.988		3.5	2.3		77.2	100.0	12.20	4800	6300
45.987	74.976		18.000	14.000		18.000	1	2.3	1.5		52.6	74.6	9.10	5000	6600
46.038	79.375		17.462	13.495		17.462		2.8	1.5		47.1	59.1	7.21	4800	6400
50.000	82.000		21.500	17.000		21.500		3.0	0.5		71.7	97.9	11.94	4500	6000
50.800	104.775		36.512	28.575		36.512		3.5	3.3		141.0	195.0	23.78	3800	5100
	82.000		22.225	17,000		21.976		3.5	0.5		61.2	84.3	10.28	4500	6000
	02.000		22.223	17.000		21.070		0.0	0.0		01.2	07.0	13.20	-1300	0000
	82.550		22.225	16.510		21.590		3.5	1.3		61.2	84.3	10.28	4500	6000
	85.000		17.462	13.495		17.462	!	3.5	1.5		49.7	65.5	7.99	4400	5900

Bearing	Abuti	ment a	nd Fille	t Dime	nsions					Weight	Dimen	ision I	Deviatio	ns			Facto	ors	
Designation																			
Cone/	d。	d _b	D _o	D _o	D _b	a。	a,	r,	r _b	~	Δdmp		ΔDmp		ΔTs				
Cup	max	min	min	max	min	min	min	max	-	-	max	min	max	min	max	min	е	Υ	Y _o
Оцр			111111	IIIdx				max	IIIdx			1111111	IIIax		IIIax		C	•	0
	mm									kg	μm								
LM300849	45.0	52.0	61.0		65.0	3.5	5.0	**	1.5	0.23	0	-13	0	-25	+203	0	0.35	1.72	1.20
/300811																			
18590/18520	46.0	53.0	66.0		69.0	4.0	5.5	3.5	1.5	0.27	+13	0	+25	0	+203	0	0.35	1.71	1.20
LM501349	46.5	53.0	67.0		70.0	3.5	5.5	3.5	8.0	0.32	+13	0	+25	0	+203	0	0.40	1.50	
/501310																			1.00
LM501349	46.5	53.0	66.0		70.0	1.5	5.5	3.5	8.0	0.34	+13	0	+25	0	+203	0	0.40	1.50	
/501314																			1.00
24780/24720	47.0	54.0	68.0		72.0	3.5	5.5	3.5	8.0	0.41	+13	0	+25	0	+203	0	0.39	1.53	
3585/3525	48.0	50.0	75.0		81.0	3.5	6.5	1.5	3.3	0.82	+13	0	+25	0	+203	0	0.31	1.96	0.77
HM803146	53.0	60.0	74.0		85.0	4.0	7.5	3.5	3.3	0.89	+13	0	+25	0	+203	0	0.55	1.10	
/803110																			1.08
25577/25520	49.0	55.0	74.0		77.0	4.5	5.5	3.5	8.0	0.58	+13	0	+25	0	+203	0	0.33	1.79	
25577/25523	51.0	58.0	72.0		77.0	1.0	5.5	3.5	2.3	0.58	+13	0	+25	0	+203	0	0.33	1.79	1.20
25577/25521	51.0	58.0	72.0		77.0	1.0	5.5	3.5	2.3	0.58	+13	0	+25	0	+203	0	0.33	1.79	
HM807040	59.0	66.0	89.0		100.0	4.0	7.0	3.5	3.3	1.62	+13	0	+25	0	+203	0	0.49	1.23	0.70
/807010																			
2580/25522	50.0	57.0	73.0		77.0	4.5	5.5	3.5	2.0	0.56	+13	0	+25	0	+203	0	0.33	1.79	0.90
HM803149	53.4	62.0	74.0		85.0	7.5	4.0	3.6	3.2	0.84	+13	0	+25	0	+203	0	0.55	1.10	
/803010																			0.74
3782/3720	52.0	58.0	82.0		88.0		7.0	3.5	3.3	0.95	+13	0	+25	0	+203		0.34		
HM903249	54.0	65.0	81.0		91.0	2.0	7.0	3.5	8.0	1.00	+13	0	+25	0	+203	0	0.74	0.81	0.99
/903210																			
U2497/U460L																			0.74
17887/17831	51.0	56.0	71.0		74.0		5.0	2.0	1.3	0.40	+13	0	+25	0	+203	0	0.37	1.60	
LM102949	50.0	56.0	68.0		70.0	3.0	4.5	3.5	8.0	0.31	+13	0	+25	0	+203	0	0.31	1.97	0.90
/102910																			
LM603049	50.0	57.0	71.0		74.0	5.0	3.5	3.6	8.0	0.36	+13	0	+25	0	+203	0	0.43	1.41	
/603011																			
LM603049	50.0	57.0	71.0		74.0	5.0	2.0	3.6	8.0	0.37	+13	0	+25	0	+203	0	0.43	1.41	
/603012																			
25590/25523	51.0	58.0	72.0		77.0		5.5	3.5	2.3	0.58	+13	0	+25	0	+203	0	0.33	1.79	
LM503349	51.0	55.0	67.0		71.0	3.5	5.0	2.3	1.5	0.30	0	-13	0	-25	+203	0	0.40	1.49	
/503310																			
18690/18620	51.0	56.0	71.0		74.0		5.0	2.8	1.5	0.33	+13	0	+25	0	+203	0	0.37	1.60	
JLM104948	55.0	60.0	76.0		78.0	4.0	5.5	3.0	0.5	0.41	0	-12	0	-18	+203	0	0.31	1.97	
/104910																			
HM807046	63.0	70.0	89.0		100.0	4.0	7.0	3.5	3.3	1.49	+13	0	+25	0	+203	0	0.49	1.23	
/807010		20.5	70.5		70.5			0.5	0.5	0.40	40		0.5		005	•	0.00	4.0=	
LM104949	55.0	62.0	76.0		78.0	5.5	4.5	3.5	0.5	0.42	+13	0	+25	0	+203	0	0.31	1.97	
/104910		00.0	75.0							0.15			0-		0				
LM104949	55.0	62.0	75.0		78.0	4.5	5.5	3.5	1.3	0.42	+13	0	+25	0	+203	0	0.31	1.97	
/104911	F0.0	00.0	77.0		00.0	0.5	- 0	0.5	4.5	0.00	40	_	05	_	000	^	0.46	4.40	
18790/18720	56.0	62.0	77.0		80.0	3.5	5.0	3.5	1.5	0.36	+13	U	+25	0	+203	0	0.41	1.48	

Single Row Tapered Roller Bearings in Inch Dimensions $d=50.800\ to\ 92.075\ mm$

Dimens	sions										Basic Load	d Rating	Fatique	Limiting S	Speed
											Dynamic	Static	load limit	for Lubric	ation with
d	D	D,	В	С	C,	Т	Т,	r _{1s}	r _{2s}	s	C,	C _{or}	Pu	Grease	Oil
								min	min			OI .	u		
mm											kN		kN	min ⁻¹	
50.800	88.900		22.225	16.513		20.638	3	3.5	1.3		74.3	87.3	10.65	4400	5800
	90.000		22.225	15.875		20.000)	3.5	2.0		74.3	87.3	10.65	4400	5800
	92.075		25.400	19.845		24.608	3	3.5	8.0		84.8	119.0	14.51	4200	5600
	93.264		30.302	23.812		30.162		3.5	3.3		103.0	137.0	16.71	4200	5500
52.388	92.075		25.400	19.845		24.608	3	3.5	0.8		84.8	119.0	14.51	4200	5600
	93.264		30.302	23.812		30.162		2.3	3.3		95.8	120.0	14.63	4600	6200
55.000	90.000		23.000	18.500		23.000)	1.5	0.5		81.4	115.0	14.02	4200	5500
57.150	104.775		29.317	24.605		30.162		2.3	3.3		109.0	144.0	17.56	3700	4900
	96.838		21.946	15.875		21.000)	2.3	0.8		80.4	101.0	12.32	3900	5200
	96.838		21.946	20.274		25.400)	2.3	2.3		80.4	101.0	12.32	3900	5200
	96.838		21.946	15.875		21.000)	3.5	0.8		80.4	101.0	12.32	3900	5200
	96.838		21.946	20.274		25.400)	3.5	2.3		80.4	101.0	12.32	3900	5200
	96.838		21.946	15.875		21.000)	5.0	0.8		80.4	101.0	12.32	3900	5200
	96.838		21.946	20.274		25.400)	5.0	2.3		80.4	101.0	12.32	3900	5200
	96.838		21.946	20.274		25.400)	0.8	0.8		80.4	101.0	12.32	3900	5200
	98.425		21.946	17.826		21.000)	2.4	0.8		80.4	101.0	12.32	3900	5200
	98.425		21.946	17.826		21.000)	3.5	0.8		80.4	101.0	12.32	3900	5200
63.500	107.950		25.400	19.050		25.400)	3.5	3.3		92.8	143.0	17.44	3400	4500
	112.712		30.048	23.812		30.162		3.5	3.3		111.0	164.0	20.00	3400	4500
66.675	110.000		21.996	18.824		22.000)	0.8	1.3		86.4	116.0	14.15	3400	4500
	112.712		30.048	23.812		30.162		3.5	3.3		111.0	164.0	20.00	3400	4500
	112.712		30.048	23.812		30.162		5.5	3.3		111.0	164.0	20.00	3400	4500
	122.238		38.354	29.718		38.100		3.5	3.3		191.0	249.0	30.37	3200	4300
68.262	110.000		21.996	18.824		22.000)	5.0	1.3		86.4	116.0	14.15	3400	4500
69.850	117.475			23.812		30.162		3.5	3.3		118.0	179.0	21.83	3200	4200
	120.000			23.444		29.794		3.5	0.8		118.0	179.0	21.83	3200	4200
71.438	117.475		30.162	23.812		30.162		3.5	3.3		118.0	179.0	21.83	3200	4200
73.025	112.712		25.400	19.050		25.400)	3.5	3.3		97.0	155.0	18.90	3200	4300
	117.475		30.162	23.812		30.162		3.5	3.3		118.0	179.0	21.83	3200	4200
80.962	150.089		46.672	36.512		44.450)	5.0	3.3		264.0	368.0	42.98	2500	3400
82.550	125.412		25.400	19.845		25.400)	3.5	1.5		101.0	162.0	19.53	2900	3800
	133.350		33.338	26.195		33.338	3	3.5	3.3		154.0	245.0	29.20	2700	3700
	139.992		36.098	28.575		36.512		3.5	3.3		175.0	262.0	30.94	2700	3600
	146.050		41.275	31.750		41.275		3.5	3.3		208.0	301.0	35.26	2600	3400
85.026	150.089		46.672	36.512		44.450)	3.5	3.3		264.0	368.0	42.75	2500	3400
89.974	146.975		40.000	32.500		40.000)	7.0	3.5		206.0	310.0	35.93	2500	3300
92.075	152.400		36.322	30.162		39.688	3	3.5	3.3		183.0	287.0	32.95	2400	3300

Bearing	Abutr	nent ar	nd Fille	t Dime	nsions					Weight	Dimen	sion I	Deviatio	ons			Facto	ors	
Designation																			
Cone/	d _a	d _b	D _a	D _a	D _b	a,	a _b	r _a	r _b	~	Δdmp		ΔDmp	ı	ΔTs				
Cup	max	min	min	max	min	min	min	max	max		max	min	max	min	max	min	е	Υ	Y _o
	mm									kg	μm								0
	111111									Ny	μιιι								
368A/362A	56.0	62.0	81.0		84.0	5.0	5.5	3.5	1.3	0.50	+13	0	+25	0	+203	0	0.32	1.88	1.20
368A/362X	56.0		81.0		84.0		5.5	3.5	2.0	0.51	+13	0	+25	0	+203	0	0.32		
28580/28521	57.0		83.0		87.0		5.0	3.5	0.8	0.69	+13	0	+25	0	+203	0			1.20
3780/3720	58.0	64.0	82.0		88.0	3.5	7.0	3.5	3.3	0.84	+13	0	+25	0	+203	0	0.34	1.77	
28584/28521	58.0	65.0	83.0		87.0	3.5	5.0	3.5	0.8	0.66	+13	0	+25	0	+203	0	0.38	1.59	1.00
3767/3720	59.0	63.0	82.0		88.0	3.5	7.0	2.3	3.3	0.81	+13	0	+25	0	+203	0	0.34	1.77	
JLM506849	61.0	63.0	82.0		86.0	3.5	5.0	1.5	0.5	0.55	0	-15	0	-18	+203	0	0.40	1.49	1.00
/506810																			
462/453X	63.0	67.0	92.0		98.0	3.0	5.5	2.3	3.3	1.04	+13	0	+25	0	+203	0	0.34	1.79	0.77
387/382A	62.0	66.0	89.0		92.0	5.5	6.0	2.3	8.0	0.58	+13	0	+25	0	+203	0	0.35	1.69	
387/382S	62.0	69.0	87.0		91.0	5.5	6.0	3.5	2.3	0.64	+13	0	+25	0	+203	0	0.35	1.69	1.08
387A/382A	62.0		89.0		92.0	6.0	5.5	3.5	8.0	0.57	+13	0	+25	0	+203	0	0.35	1.69	
387A/382S	62.0		87.0		91.0		6.0	3.5	2.3	0.64	+13	0	+25	0	+203	0	0.35	1.69	1.20
387AS/382A	62.0				92.0		6.0	5.0	8.0	0.56	+13	0	+25		+203	0	0.35		
387AS/382S	62.0		87.0		91.0		6.0	3.5	2.3	0.64	+13	0	+25	0	+203	0			0.70
387S/382S	62.0		87.0		91.0		6.0	3.5	2.3	0.64	+13	0	+25	0	+203	0		1.69	
387/382A	62.0		89.0		92.0		5.0	2.4	0.8	0.61	+13	0	+25	0	+203	0	0.35	1.69	0.90
387A/382	62.0		90.0		92.0		4.0	3.5	0.8	0.62	+13	0	+25	0	+203	0		1.69	
29585/29520	71.0	-	96.0		103.0		6.0	3.5	3.3	0.91	+13	0	+25	0	+203	0	0.46	1.31	0.74
3982/3920	71.0		99.0		106.0		6.5	3.5	3.3	1.22	+13	0	+25	0	+203	0	0.40	1.49	0.00
395A/394A 3984/3920	73.0 74.0		101.0 99.0		104.0 106.0	-	4.0 6.5	0.8	1.3	1.06 0.78	+13	0	+25 +25	0	+203	0	0.40	1.49	0.99
3994/3920	74.0		99.0		106.0		6.5	5.5	3.5	1.15	+13	0	+25	0	+203	0			0.74
HM212049	82.0		108.0		116.0		6.5	3.5	3.3	1.15	+13	0	+25	0	+203	0	0.40	-	0.74
/212011	02.0	73.0	100.0		110.0	3.0	0.5	3.3	3.3	1.04	+13	U	+23	U	+203	U	0.54	1.70	0.90
399AS/394A	74.0	83.0	101.0		104.0	4.5	4.0	5.0	1.3	0.72	+13	0	+25	0	+203	0	0.40	1.49	0.50
33275/33462	77.0		104.0		112.0		6.5	3.5	3.3	1.25	+13	0	+25	0	+203	0	0.44	1.38	
33275/33472	77.0		104.0		112.0		6.5	3.5	3.3	1.25	+13	0	+25	0	+203	0	-	1.38	
33281/33462	79.0				112.0	3.5	6.5	3.5	3.3	1.18	+13	0	+25	0	+203	0	0.44	1.38	
29685/29620	80.0		101.0		109.0		6.0	3.5	3.3	0.88	+13	0	+25	0	+203	0	0.49	1.23	
33287/33462	80.0	87.0	104.0		112.0	3.5	6.5	3.5	3.3	1.17	+13	0	+25	0	+203	0	0.44	1.38	
740/742	91.0	101.0	134.0		142.0	7.0	9.5	5.0	3.3	3.39	+25	0	+25	0	+203	0	0.33	1.84	
27687/27620	89.0	96.0	115.0		120.0	4.0	6.5	3.5	1.5	1.04	+25	0	+25	0	+203	0	0.42	1.44	
47686/47620	90.0	97.0	119.0		128.0	5.0	7.5	3.5	3.3	1.69	+25	0	+25	0	+203	0	0.40	1.48	
580/572	91.0		125.0		133.0		7.0	3.5	3.3	2.14	+25	0	+25	0	+203	0	0.40	1.49	
663/653	92.0		131.0		139.0		8.0	3.5	3.3	2.75	+25	0	+25	0	+203	0	0.41	1.47	
749/742	95.0		134.0		142.0	7.0	9.5	3.5	3.3	3.21	+25	0	+25	0	+203	0	0.33	1.84	
HM218248	99.0	112.0	133.0		141.0	5.5	9.0	7.0	3.5	2.36	0	-25	0	-25	+203	0	0.33	1.80	
/218210																			
598/592A	101.0	107.0	135.0		144.0	1.0	8.0	3.5	3.3	2.61	+25	0	+25	0	+203	0	0.44	1.36	

Four - Row Tapered Roller Bearings d = 160 to 630 mm

Dime	nsions					Basic Rating		Fatique load limit	Limiting Sp for Lubrica		Bearing Designation
d	D	В	r _s	а	b	Dyn.	Stat.	P _u	Grease	Oil	
			min			C,	C _{or}				
mm						kN	- or	kN	min-1		
111111						KIN		NIN	111111		
160	240	145	2.5	2.5	34.25	799	1724	170.77	710	940	36032
170	260	160	2.5	2.5	37.75	990	2140	207.43	630	840	36034
180	280	180	2.5	2.5	42.50	1147	2494	236.90	590	780	36036
190	290	180	2.5	2.5	42.50	1170	2597	243.55	540	720	36038
200	310	200	2.5	2.5	47.50	1415	3112	286.59	500	670	36040
220	340	218	3.0	3.0	51.75	1682	3766	337.22	420	560	36044
240	360	218	3.0	3.0	51.75	1704	3923	344.09	400	530	36048
260	400	250	4.0	4.0	59.75	2234	5082	433.18	330	450	36052
280	420	250	4.0	4.0	59.75	2267	5294	443.35	320	420	36056
300	460	290	4.0	4.0	69.25		6755	551.92	290	380	36060
320	480	290	4.0	4.0	69.25		7036	566.10	260	340	36064
340	520	325	5.0	5.0	77.50	3523	8529	671.50	240	320	36068
360	480	218	3.0	3.0	51.75		5992	475.10	240	320	36972
	540	325	5.0	5.0	77.50		8868	688.73	220	290	36072
380	560	325	5.0	5.0	77.50		9202	705.41	200	260	36076
400	600	355	5.0	5.0	84.75 84.75	4338	10633	800.11	190	250	36080 36084
420 500	620 720	355 400	5.0 6.0	5.0 6.0	95.00	4422 5387	11052 14325	821.91 1015.50	140	240 190	360/500
525	780	450	6.0	6.0	106.50		17558	1219.80	126	170	360/525
530	780	450	6.0	6.0	106.50	6663	17558	1218.40	120	160	360/530
630	920	515	7.5	7.5	125.00		24230	1598.63	94	126	360/630
000	020	0.0	7.0	7.0	.20.00	0.00	2.200	1000.00	0.	.20	000/000

Weight	Factors			
	е	Y ₁	Y ₂	Y ₀
kg				
23.6	0.45	1.5	2.2	1.5
30.0	0.46	1.5	2.2	1.5
40.5	0.45	1.5	2.2	1.5
42.5	0.47	1.4	2.2	1.4
51.5	0.44	1.5	2.3	1.5
71.6	0.45	1.5	2.3	1.5
76.3	0.48	1.4	2.1	1.4
111.0	0.44	1.5	2.3	1.5
117.0	0.47	1.4	2.1	1.4
169.0	0.44	1.5	2.3	1.5
177.0	0.47	1.4	2.2	1.4
241.0	0.44	1.5	2.3	1.5
113.0	0.43	1.6	2.3	1.5
253.0	0.46	1.5	2.2	1.4
263.0	0.48	1.4	2.1	1.4
339.0	0.44	1.5	2.3	1.5
351.0	0.46	1.5	2.2	1.4
504.0	0.47	1.4	2.1	1.4
713.0	0.45	1.5	2.2	1.5
693.0	0.45	1.5	2.2	1.5
1090.0	0.44	1.5	2.3	1.5

Thrust Ball Bearings

From the point of view of design, thrust ball bearings are divided into single direction and double direction.

Single direction thrust ball bearings consist of two washers with raceways and balls guided by a cage. Washers have flat seating surfaces, and that is why they must be supported so that all balls can be evenly loaded. Bearings carry the axial load only in one direction. They are not able to carry radial forces.

Double direction thrust ball bearings have two cages with balls between the central shaft washer and two housing washers with flat seating surfaces. The shaft washer has raceways on both sides and is fixed on the journal. Bearings are able to carry only axial forces in both directions.

Boundary Dimensions

Boundary dimensions comply with the standard ISO 15 and are shown in the dimension tables of this publication.

Designation

Bearing designation in standard design is in the dimension tables of this publication. Difference from standard design is designated by additional symbols (section 2.2).

Cage

Thrust ball bearings have in basic design cage a according to the table. Material and design designations are not indicated.

Customer's requiring special arrangements should be discuss this in advance with the supplier.

Bearings with Pressed Steel Cage	Bearings with Machined Brass or Steel Cage
51100 do 51144	51148 to 511/1000
51200 to 51236	51238 to 51260
51305 to 51324	51326 to 51330
51405 to 51418 ¹⁾	51420 to 51430
52202 to 52232	
52305 to 52324	
52405 to 52418 ¹⁾	52420
1) Paris - 51100 and 50100 are made and made	with solid aggs made of polyamids with filling (TNCN)

1) Bearings 51408 and 52408 are produced with solid cage made of polyamide with filling (TNGN)

Tolerance

Bearings are commonly manufactured in tolerance class PO which is not indicated. Bearings for more demanding arrangements are delivered in tolerance classes P6 and P5.

Limiting values of dimension and running accuracy are shown in Table 20.

Misalignment

Bearings require keeping the tolerance for seating surfaces alignment, because misalignment causes increased stress at the contact of the balls with raceways. Therefore where alignment conditions cannot be kept, the use of thrust ball bearings is not recommended.

Axial Equivalent Dynamic Load

$$P_a = F_a$$
 [kN]

Minimum Axial Load

At higher rotational speeds danger of ball sliding between ring raceways can occur because of centrifugal forces, if axial load F_2 drops under minimum value. Minimum value F_2 is calculated from equation:

$$F_{a\,min} = M \left(\frac{n_{max}}{1000}\right)^{2} \end{\left[kN\right]} \label{eq:Famin}$$

přičemž:

F_{a min} - minimum axial load [kN]
n_{max} - maximum rotational speed [min⁻¹]
M - minimum axial load factor
(values are in dimension tables)

If the axial load is smaller than $F_{a \min}$, or if bearing relieving comes into being during operation, e.g. of one ball row in double direction bearing, or of one bearing when using a pair of single direction thrust bearings, it is necessary to secure minimum load, e.g. by means of springs.

Axial Equivalent Static Load

$$P_{oa} = F_{a}$$
 [kN]

Single Direction Thrust Ball Bearings d = 10 to 70 mm

Dim	ensions					Basic Load Dynamic	d Rating Static	Fatique load	Limiting :	Speed cation with	Bearing Designation
d	D	d ₁	D ₁	Н	r _s	C _a	C _{oa}	limit	TOT EUDIT	odilon with	Boolghation
		·	·		min	a	- Ca	P _u	Grease	Oil	
mm						kN		kN	min-1		
10	24	24	11	9	0,3	11,20	14,0	0,64	7900	10600	51100**
12	26	26	13	9	0,3	11,54	15,4	0,70	7500	10000	51101**
15	28	28	16	9	0,3	11,76	16,8	0,76	7100	9400	51102**
	32	13	17	12	0,6	17,27	24,4	1,11	6000	7900	51202**
17	30	30	18	9	0,3	12,66	19,6	0,89	7100	9400	51103**
	35	35	19	12	0,6	17,82	26,6	1,21	5600	7500	51203**
20	35	35	21	10	0,3	16,80	26,6	1,21	6300	8400	51104**
	40	40	22	14	0,6	24,53	37,7	1,71	5000	6700	51204**
25	42	42	26	11	0,6	20,27	35,5	1,61	5300	7100	51105**
	47	47	27	15	0,6	30,58	50,5	2,30	4500	6000	51205**
	52	52	27	18	1,0	38,91	61,5	2,80	3800	5000	51305**
	60	60	27	24	1,0	60,50	89,4	4,06	3200	4200	51405**
30	47	47	32 32	11	0,6	21,06	39,9	1,81 2,65	5000 4000	6700 5300	51106** 51206**
	52 60	52 60	32	16 21	0,6	30,28	58,2 78,7		3300	4500	51206**
	70	70	32	28	1,0 1,0	44,84 79,24	126,0	3,58 5,73	2700	3500	51406**
35	52	52	37	12	0,6	22,51	46,6	2,12	4700	6300	51107**
33	62	62	37	18	1,0	41,84	78,2	3,55	3500	4700	51207**
	68	68	37	24	1,0	58,83	105,0	4,77	2800	3800	51307**
	80	80	37	32	1,1	94,72	155,0	7,05	2200	3000	51407**
40	60	60	42	13	0,6	30,13	62,9	2,86	4200	5600	51108**
	68	68	42	19	1,0	48,40	92,4	4,20	3200	4200	51208**
	78	78	42	26	1,0	73,46	135,0	6,14	2700	3500	51308**
	90	90	42	36	1,1	122,08	205,0	9,32	2000	2700	51408TNGN**
45	65	65	47	14	0,6	31,25	69,2	3,15	4000	5300	51109**
	73	73	47	20	1,0	46,97	105,0	4,77	3000	4000	51209**
	85	85	47	28	1,0	87,20	164,0	7,45	2400	3200	51309**
	100	100	47	39	1,1	141,70	243,0	11,05	1900	2500	51409**
50	70	70	52	14	0,6	32,26	75,5	3,43	3800	5000	51110**
	78	78	52	22	1,0	51,92	111,0	5,05	2800	3800	51210**
55	78	78	57	16	0,6	36,54	93,2	4,24	3300	4500	51111**
	90	90	57	25	1,0	73,56	159,0	7,23	2500	3300	51211**
	105	105	57	35	1,1	122,57	246,0	11,18	1900	2500	51311**
	120	120	57	48	1,5	214,24	397,0	18,05	1600	2100	51411**
60	85 110	85 110	62	17 25	1,0 1,1	46,37 125,24	113,0	5,14 12,27	3200 1900	4200 2500	51112** 51312**
65	90	90	62 67	35 18	1,1	44,62	270,0 117,0	5,32	2300	3400	51113**
03	100	100	67	27	1,0	76,40	189,0	8,59	2400	3200	51213**
	115	115	67	36	1,1	129,28	287,0	13,05	1800	2400	51313**
70	95	95	72	18	1,0	46,55	127,0	5,77	2800	3800	51114**
, 5	105	105	72	27	1,0	76,86	199,0	9,05	2200	3000	51214**
	125	125	72	40	1,1	158,36	340,0	15,45	1700	2200	51314**
	150	150	73	60	2,0	272,50	553,0	23,97	1200	1600	51414**
					,						aug NEW EORCE)

^{**} Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

Abut	tment and Fi	llet Dimension	IS	Weight	Minimum Axial Load Factor
d	d _a min	D _a max	r _a max	~	200.
mm				kg	
10	19	15	0,3	0,020	0,001
12	21	17	0,3	0,020	0,002
15	23	20	0,3	0,020	0,002
	25	22	0,6	0,050	0,004
17	25	22	0,3	0,030	0,003
	28	24	0,6	0,050	0,004
20	29	26	0,3	0,040	0,004
	32	28	0,6	0,080	0,008
25	35	32	0,6	0,060	0,006
	38	34	0,6	0,120	0,015
	41	36	1,0	0,180	0,020
	46	39	1,0	0,340	0,035
30	40	37	0,6	0,070	0,008
	43	39	0,6	0,140	0,018
	48	42	1,0	0,270	0,030
	54	46	1,0	0,530	0,085
35	45	42	0,6	0,080	0,012
	51	46	1,0	0,220	0,032
	55	48	1,0	0,390	0,050
	62	53	1,0	0,790	0,120
40	52	48	0,6	0,120	0,018
	57	51	1,0	0,270	0,047
	63	55	1,0	0,550	0,095
	70	60	1,0	1,140	0,190
45	57	53	0,6	0,150	0,025
	62	56	1,0	0,320	0,060
	69	61	1,0	0,690	0,130
	78	67	1,0	1,470	0,350
50	62	58	0,6	0,160	0,035 0,082
55	67 69	61 64	1,0 0,6	0,390 0,240	0,040
55	76	69	1,0	0,240	0,110
	85	75	1,0	1,340	0,270
	94	81	1,0	2,640	0,650
60	75	70	1,0	0,290	0,066
00	90	80	1,0	1,430	0,350
65	80	75	1,0	0,330	0,086
00	86	79	1,0	0,330	0,170
	95	85	1,0	1,570	0,450
70	85	80	1,0	0,360	0,110
, 0	91	84	1,0	0,810	0,210
	103	92	1,0	2,060	0,540
	118	102	2,0	5,480	1,600
			=,=	-,	,

Single Direction Thrust Ball Bearings d = 75 to 150 mm

Dimensions						Basic Load		Fatique	Limiting		Bearing
d	D	d ₁	D ₁	Н	r _s min	Dynamic C _a	Static C _{oa}	load limit		cation with	Designation
					min			P _u	Grease	Oil	
mm						kN		kN	min ⁻¹		
75	100	100	77	19	1,0	49,84	136,0	6,18	2700	3500	51115**
	110	110	77	27	1,0	81,17	209,0	9,50	2200	3000	51215**
	135	135	77	44	1,5	193,20	426,0	18,90	1600	2100	51315**
80	105	105	82	19	1,0	49,95	141,0	6,41	2700	3500	51116**
	115	115	82	28	1,0	86,35	219,0	9,95	2000	2700	51216**
85	170 110	170 110	83 87	68 19	2,1	326,51 51,52	751,0 150,0	30,53	890 2700	1200 3500	51416** 51117**
85	125	-	88	-	1,0			6,82		2700	5117**
	150	125 150	88	31 49	1,0 1,5	104,94 227.46	264,0 517,0	11,71 21,68	2000 1300	1800	51217**
90	120	120	92	22	1,0	66,86	190,0	8,43	2000	2700	51118**
90	155	155	93	50	1,5	236,64	556.0	22,83	1100	1500	51318**
	190	187	93	77	2,1	384,81	970,0	37,26	790	1060	51418**
100	135	135	102	25	1,0	95,31	268,0	11,24	2000	2700	51120**
100	170	170	103	55	1,5	266,06	628,0	24,57	1060	1400	51320**
	210	205	103	85	3.0	453,49	1220,0	44,54	750	1000	51420**
110	145	145	112	25	1,0	97,78	288,0	11,59	1900	2500	51122**
	190	187	113	63	2,0	323,30	807,0	29,95	890	1200	51322**
	230	225	113	95	3,0	495,91	1400,0	48,81	670	890	51422**
120	155	155	122	25	1,0	95,12	308,0	11,94	1600	2100	51124**
	210	205	123	70	2,1	368,88	977,0	34,57	790	1060	51324**
	250	245	123	102	4,0	566,04	1590,0	53,14	630	840	51424**
130	170	170	132	30	1,0	127,33	406,0	15,07	1400	1900	51126**
	225	220	134	75	2,1	389,02	1070,0	36,51	750	1000	51326**
	270	265	134	110	4,0	643,37	2010,0	64,60	560	750	51426**
140	240	235	144	80	2,1	438,84	1260,0	41,55	710	940	51328**
150	190	188	152	31	1,0	131,61	448,0	15,62	1300	1800	51130**
	215	212	153	50	1,5	281,84	835,0	28,10	900	1300	51230**
	250	245	154	80	2,1	454,74	1360,0	43,71	670	900	51330**

^{**} Bearings in the new standard NEW FORCE (see the catalogue NEW FORCE)

Abu	itment and Fi	llet Dimension	าร	Weight	Minimum Axial Load Factor
d	d _a min	D _a max	r _a max	~	Load i actor
mm				kg	
75	90	85	1,0	0,420	0,120
	96	89	1,0	0,860	0,270
	111	99	1,5	2,680	0,760
80	95	90	1,0	0,430	0,150
	101	94	1,0	0,950	0,350
	133	117	2,0	7,970	2,700
85	100	95	1,0	0,460	0,180
	109	101	1,0	1,290	0,430
	123	111	1,5	3,660	1,200
90	108	102	1,0	0,680	0,260
	129	116	1,5	3,880	1,500
	149	131	2,0	11,200	4,100
100	121	114	1,0	0,990	0,340
	142	128	1,5	5,110	2,000
	165	145	2,5	15,000	6,200
110	131	124	1,0	1,080	0,420
	158	142	2,0	7,870	2,800
	181	159	2,5	20,200	9,000
120	141	134	1,0	1,160	0,530
	173	157	2,0	10,900	4,100
	197	173	3,0	25,500	13,000
130	154	146	1,0	1,870	0,650
	186	169	2,0	13,300	6,200
	213	187	3,0	32,000	18,000
150	199	181	2,0	15,900	8,000
	174	166	1,0	2,200	0,950
	189	176	1,5	6,100	2,800
	209	191	2,0	16,500	10,000

Single Direction Thrust Ball Bearings d = 160 to 240 mm

Dim	nensions	;				Basic Load		Fatique	Limiting		Bearing
d	D	d,	D,	Н	r	Dynamic C _a	Static C _{oa}	load limit	for Lubric	cation with	Designation
		-1	1		r _s min	a	- oa	Pu	Grease	Oil	
mm						kN		kN	min ⁻¹		
160	200	198	162	31	1,0	133,75	476,0	16,13	1300	1800	51132**
	225	222	163	51	1,5	288,75	874,0	28,63	890	1200	51232**
170	215	213	172	34	1,1	160,14	582,0	19,07	1200	1600	51134**
	240	237	173	55	1,5	300,67	897,0	28,48	840	1100	51234**
180	225	222	185	34	1,1	165,64	639,0	20,41	1100	1500	51136**
	250	247	183	56	1,5	325,28	1030,0	31,93	840	1100	51236**
190	240	237	193	37	1,1	200,09	715,0	22,16	1060	1400	51138**
	270	267	194	62	2,0	381,99	1240,0	37,17	750	1000	51238**
200	250	247	203	37	1,1	197,40	738,0	22,36	1060	1400	51140**
000	280	277	204	62 37	2,0	376,64	1240,0	36,38	750	1000 1300	51240**
220	270 300	267 297	243	45	1,1 1,5	200,09 277,13	760,0 1040,0	22,07 28,77	1000 840	1100	51144** 51148**
240	300	291	243	45	1,5	2//,13	1040,0	20,77	040	1100	31140

Abutr	ment and F	illet Dimension	ns	Weight	Minimum Axial Load Factor
d	d _a min	D _a max	r _a max	~	Luau Facioi
mm				kg	
160	184	176	1,0	2,330	1,200
	199	186	1,5	6,670	3,200
170	197	188	1,0	3,310	1,500
	212	198	1,5	8,280	4,600
180	207	198	1,0	3,480	1,900
	222	208	1,5	8,850	5,500
190	220	210	1,0	4,060	2,400
200	238	222	2,0	11,900	7,500
200	230	220	1,0	4,240	3,100
200	248 250	232	2,0	12,400	9,500
220	276	240 264	1,0 1,5	4,620 7,550	4,600 6,500
_+0	210	204	1,5	7,550	0,300

Double Direction Thrust Ball Bearings $d_z = 10$ to 140 mm

Dimensions								Basic Load Dynamic	d Rating Static	Fatique load	Limiting S	Speed ation with
d ₂	D	d ₃	D,	Н	В	r _s	r _{is}	C _a	C _{oa}	limit		
						r _s min	r _{1s} min		-	P _u	Grease	Oil
mm								kN		kN	min ⁻¹	
10	32	32,0	17	22	5	0,6	0,3	17,27	24,4	1,11	6000	7900
15	40	40,0	22	26	6	0,6	0,3	24,53	37,7	1,71	5000	6700
	60	60,0	27	45	11	1,0	0,6	60,50	89,4	4,06	3200	4200
20	47	47,0	27	28	7	0,6	0,3	30,58	50,5	2,30	4500	6000
	52	52,0	27	34	8	1,0	0,3	38,91	61,5	2,80	3800	5000
	70	70,0	32	52	12	1,0	0,6	79,24	126,0	5,73	2700	3500
25	52	52,0	32	29	7	0,6	0,3	30,28	58,2	2,65	4000	5300
	60	60,0	32	38	9	1,0	0,3	44,84	78,7	3,58	3300	4500
	80	80,0	37	59	14	1,1	0,6	94,72	155,0	7,05	2200	3000
30	62	62,0	37	34	8	1,0	0,3	41,45	78,2	3,55	3500	4700
	68	68,0	37	44	10	1,0	0,3	60,50	105,0	4,77	2800	3800
	68	68,0	42	36	9	1,0	0,6	48,40	92,4	4,20	3200	4200
	78	78,0	42	49	12	1,0	0,6	74,15	135,0	6,14	2700	3500
	90	90,0	42	65	15	1,1	0,6	122,08	205,0	9,32	2 000	2700
35	73	73,0	47	37	9	1,0	0,6	46,97	105,0	4,77	3000	4000
	85	85,0	47	52	12	1,0	0,6	87,20	164,0	7,45	2400	3200
	100	100,0	47	72	17	1,1	0,6	141,70	243,0	11,05	1900	2500
40	78	78,0	52	39	9	1,0	0,6	51,92	111,0	5,05	2800	3800
45	90	90,0	57	45	10	1,0	0,6	73,56	159,0	7,23	2500	3300
		105,0	57	64	15	1,1	0,6	123,76	246,0	11,18	1900	2500
		120,0	57	87	20	1,5	0,6	212,18	397,0	18,05	1600	2100
50	110	110,0	62	64	15	1,1	0,6	125,24	270,0	12,27	1900	2500
55	100	100,0	67	47	10	1,0	0,6	76,40	189,0	8,59	2400	3200
	115	115,0	67	65	15	1,1	0,6	129,28	287,0	13,05	1800	2400
		105,0	72	47	10	1,0	1,0	77,62	198,0	9,00	2200	3000
	125	125,0	72	72	16	1,1	1,0	161,32	340,0	15,45	1700	2200
		150,0	73	107	24	2,0	1,0	272,50	553,0	24,83	1200	1600
60	110	110,0	77	47	10	1,0	1,0	76,62	209,0	9,50	2200	3000
		135,0	77	79	18	1,5	1,0	193,20	426,0	19,36	1600	2100
65	115	115,0	82	48	10	1,0	1,0	86,35	219,0	9,95	2000	2700
		170,0	83	120	27	2,1	1,0	336,02	751,0	31,49	890	1200
70		125,0	88	55	12	1,0	1,0	104,94	264,0	12,00	1900	2500
		150,0	88	87	19	1,5	1,0	243,07	517,0	22,41	1300	1800
		189,5	93	135	30	2,1	1,1	403,86	970,0	38,67	790	1060
75		155,0	93	88	19	1,5	1,0	245,92	556,0	23,57	1100	1500
100		209,5	123	123	27	2,1	1,1	368,88	977,0	35,67	790	1060
140	225	224,5	163	90	20	1,5	1,1	294,25	874,0	29,41	890	1200
					**	Doorings	مطاء من		ard NEW FO	DCE (see the s	otalasua NI	EW EODOE

Bearing Designation	Abutr	ment and F	illet Dimension	ns		Weight	Minimum Axial Load Factor
Dooignation	d ₂	d _a	D _a	r _a	r _b	~	2000 1 00101
	2	max	max	max	max		
	mm					kg	
52202**	10	15	22	0,6	0,3	0,08	0,004
52204**	15	20	28	0,6	0,3	0,15	0,008
52405**		25	39	1,0	0,6	0,63	0,035
52205**	20	25	34	0,6	0,3	0,23	0,015
52305**		25	36	1,0	0,3	0,33	0,020
52406**		30	46	1,0	0,6	1,00	0,085
52206**	25	30	39	0,6	0,3	0,27	0,018
52306**		30	42	1,0	3,0	0,49	0,030
52407**		35	53	1,0	0,6	1,44	0,120
52207**	30	35	46	1,0	0,3	0,42	0,032
52307**		35	48	1,0	0,3	0,71	0,050
52208**		40	51	1,0	0,6	0,54	0,047
52308**		40	55	1,0	0,6	1,06	0,095
52408TNGN**	0.5	40	60	1,0	0,6	2,03	0,190
52209**	35	45	56	1,0	0,6	0,62	0,060
52309**		45 45	61	1,0	0,6	1,29	0,130
52409**	-10		67	1,0	0,6	2,71	0,350
52210** 52211**	40 45	50 55	61 69	1,0 1,0	0,6	0,71 1,12	0,082
52311**	45	55 55	75	1,0	0,6	2,51	0,110 0,270
52411**		55	81	1,0	0,6 0,6	4,70	0,650
52312**	50	60	80	1,0	0,6	2,68	0,350
52213**	55	65		1,0	0,6	1,36	0,170
52313**	33	65	85	1,0	0,6	2,90	0,450
52214**		70	84	1,0	0,6	1,48	0,430
52314**		70	92	1,0	1,0	3,90	0,540
52414**		70	102	2,0	1,0	9,71	1,600
52215**	60	75	89	1,0	1,0	1,57	0,270
52315**	00	75	99	1,5	1,0	4,83	0,760
52216**	65	80	95	1,0	1,0	1,69	0,350
52416**		80	117	2,0	1,0	14,00	2,700
52217**	70	85	101	1,0	1,0	2,34	0,430
52317**		85	111	1,5	1,0	6,43	1,200
52418**		90	131	2,0	1,0	19,60	4,100
52318**	75	90	116	1,5	1,0	6,60	1,500
52324**	100	120	157	2,0	1,0	17,20	4,100
52232**	140	160	186	1,5	1,0	12,20	3,200

Spherical Roller Thrust Bearing

Spherical roller thrust bearings have a great number of asymetrical spherical rollers with a good conformity to the raceway of the shaft and housing washers and that is why they are suitable for accommodating great axial load as well as certain radial load at relatively high rotational speed. Bearings are separable which can be utilized when mounting.

The internal bearing design requires oil lubrication. An exception is created by conditions where the bearing is working at very small rotational speed.

Bearings are produced in several designs, see picture. Delivery of bearings in "J" design should be discussed with the supplier in advance.

Boundary Dimensions

Boundary dimensions of spherical roller thrust bearings comply with the standard ISO 104 and are shown in dimension tables.

Designation

Bearing designation of standard bearings is in the dimension tables of this publication. Difference from basic design is indicated by additional symbols shown in section 2.2.

Cage

Spherical roller thrust bearings in "M" design have brass cages guided by a steel sleeve on the shaft washer.

Bearings in "J" design have pressed steel cages guided on the shaft washer.

Bearings in "J" design are interchangable with bearings with machined brass cage. If the bearing with machined brass cage is to be replaced in arrangement, where the shaft washer rests on the shaft on the face of steel sleeve which guides the cage by the bearing in "J" design, it is necessary to insert a spacer between the shaft washer and original shaft shoulder, as shown in the picture.

Tolerance

Bearings are commonly produced in normal tolerance class PO which is not indicated. Limiting values of dimension and running deviations are shown in table 20.

Misalignment

Spherical raceway of the bearing housing washer enables, at common operation conditions ($P_a \le 0.1C_a$) misalignment from the central position without damaging the correct bearing function of values according to the table below.

Bearing Type	Permissible Misalignment
292	2°
292 293 294	2°30'
294	3°

Arrangement Design

Abutment and fillet dimensions shown in the dimension tables of this publication are suitable for bearings where the load $P_a \leq 0.1C_a$. At higher load it is suitable to support bearing washers along the face surface, i.e. $d_a = d_1$ and $D_a = D_1$.

Axial Equivalent Dynamic Load

$$P_{3} = F_{3} + 1.2F_{5}$$
 $(F_{5} \le 0.55F_{3})$ [kN]

Minimum Axial Load

At higher rotational speed by spherical roller thrust bearings arises the danger of rolling element sliding. A potential problem exist in the use of spherical roller thrust bearings at higher rotational speed, the danger arises from the possibility of the rolling element sliding between raceways due to centrifugal forces acting in such cases when the axial load F_a drops under minimum value. For calculation of minimum value $F_{a\,\text{min}}$ following relation is used:

$$\frac{C_{\text{oa}}}{2000} \leqq F_{\text{a min}} = 1.8 \; F_{\text{r}} \, M \left(\frac{n_{\text{max}}}{1000} \right)^{\! 2} \qquad \quad \text{[kN]} \label{eq:energy_energy}$$

F_{a min} - minimum axial load [kN]
F_r - radial bearing load [kN]
C_{oa} - axial basic static load rating [kN]
(values are in dimension tables)
n_{max} - maximum rotational speed [min⁻¹]
M - minimum axial load factor [values are in dimension tables]

If the external axial bearing load is too small, or if the bearing is relieved in operation, e.g. in a bearing pair, it is necessary to create axial load, e.g. with springs. If also radial load acts the simultaneously, following condition must be fulfilled:

$$F_r \leq 0.55F_a$$

Axial Equivalent Static Load

$$P_{a} = F_{a} + 2.7F_{r} \quad (F_{r} \le 0.55F_{a})$$
 [kN]

Static safety factor for spherical roller thrust bearings must be $s_{_{\rm o}} \geqq 4$.

Spherical Roller Thrust Bearings d = 50 to 160 mm

Dim	ension	s										Basic Loa		Fatique
d	D	Н	d ₁	D ₁	В	B ₁	B ₂	B ₃	h	Α	r _s min	Dynamic C _a	Static C _{oa}	load limit P _u
mm												kN		kN
50_	110	36	95,0	70,0	25,0	13		32,0	20,5	32	1,5	290	930	113,41
60	130	42	118,0	88,0	28,0	15	39,5	35,5	20,0	38	1,5	287	809	98,66
	130	42	118,0	87,0	27,0	27		37,0	20,0	38	1,2	382	1004	122,44
65	140	45	128,0	96,5	28,0	16	42,5	38,0	21,0	42	2,0	340	973	117,78
	140	45	128,0	93,0	29,5	16	45.5	39,0	21,0	42	2,0	434	1155	139,81
70	150 150	48	137,0	102,0	32,0	17	45,5	42,5	23,0	44 44	2,0	371	1070	126,81
75	160	48 51	137,0	101,0	31,0 34,5	17	40.0	42,5	23,0	44	2,0	464 429	1268 1250	150,28
75	160	51	146,0 146,0	109,0 108,0	33,5	18 18	48,0	47,0	24,0 24,0	47	2,0	524	1465	145,24 170,22
80	170	54	155,0	116,0	36,0	19	51,0	47,0	24,0	50	2,0 2,1	464	1370	156,25
80	170	54	155,0	116,0	36,0	19	31,0	46,5	24,0	50	2,1	570	1430	163,10
85	180	58	164,0	125,0	38,0	21	55,0	40,3	28.0	54	2,1	527	1570	175,96
03	180	58	164,0	123,0	37,0	21	33,0	50,0	28,0	54	2,0	692	1945	217,99
90	190	60	174,0	130,0	57,0	22	57,0	30,0	29,0	56	2,1	578	1780	196,23
30	190	60	174,0	130,0		22	57,0		29,0	56	2,1	703	2172	239,45
100	170	42	150,0	128,0	26,2	15	57,0	37,3	20,5	58	1,5	436	1400	156,03
100	210	67	193,0	144,5	20,2	24	64,0	07,0	32.0	62	3,0	705	2170	232,03
	210	67	193,0	144,0		24	64,0		32,0	62	2,5	865	2578	275,66
110	190	48	176,0	143,0		16	45,5		23,0	64	2,0	442	1420	153,34
	190	48	176,0	143,0	31,0	16	,.	42,0	23,0	64	2,0	570	1760	190,05
	230	73	212,0	160,0	- 1,0	26	69,0	,-	35,0	69	3,0	817	2600	270,41
	230	73	209,5	159,0		27	,-		35.0	69	2,5	1022	3078	320,13
120	210	54	187,1	155,5	35,5	19		47,0	27,0	70	2,1	680	2500	262,35
	210	54	194,0	157,5	ĺ	18	51,0	ĺ	26,0	70	2,1	560	1830	192,04
	250	78	229,0	172,0		29	74,0		37,0	74	4,0	934	3000	304,20
	250	78	226,8	173,0		29			37,0	74	4,0	1180	3590	364,02
130	225	58	205,0	170,0	37,0	19	55,0		28,0	76	2,1	628	2070	212,52
	225	58	201,5	165,7		21		49,6	30,1	76	2,1	765	2950	302,86
	270	85	247,0	188,0	55,5	31	81,0		41,0	81	4,0	1090	3540	350,66
	270	85	245,0	188,0		31		74,0	41,0	81	4,0	1395	4300	425,94
140	240	60	219,0	183,0		20	57,0		29,0	82	2,1	675	2310	232,37
	240	60	214,9	178,9	38,5	22	-	52,4	30,0	82	2,1	850	3150	316,86
	280	85	257,0	197,5		31	81,0		41,0	86	4,0	1130	3750	366,06
	280	85	254,0	196,5	54,0	32		74,0	41,0	86	4,0	1509	4686	457,43
150	250	60	229,0	193,0		20	57,0		29,0	87	2,1	697	2430	240,70
	250	60	222,5	189,6	38,0	22	-	53,8	28,0	87	2,1	863	3236	320,54
	300	90	276,0	211,5	50.6	32	86,0	70.6	44,0	92	4,0	1280	4270	408,28
100	300	90	273,0	209,5	58,0	34		79,0	44,0	92	4,0	1626	5241	501,12
160	270	67	243,6	202,3	42,0	24	-	58,6	33,0	92	3,0	1036	3977	385,49
	270	67	248,0	207,0	CO F	23	64,0	00.0	32,0	92	3,0	807	2810	272,37
	320	95	282,8	221,7	60,5	35	-	82,0	45,5	99	5,0	1800	6550	614,28

Limiting Speed	Bearing	Abut	ment ar	nd Fillet D	imensio	าร		Weight	Minimum Axial
for Lubrication with	Designation	d	d _a	d _{b1}	D _a	d _{b2}	r _a	~	Load Factor
Oil			min	max	max	min	max		
min ⁻¹		mm						kg	
3100	29410EJ	50	70	56,0	90	60.5	1,50	1,67	0,110
2400	29412M*	60	90		109		1,50	2,60	0,082
2600	29412EJ		90	67,0	117	67,0	1,50	2,47	0,130
2200	29413M*	65	100		118		2,00	3,30	0,120
2400	29413EJ		100	72,0	118	72,0	2,00	3,26	0,140
2000	29414M*	70	105		126		2,00	4,00	0,140
2200	29414EJ		105	77,5	126	77,5	2,00	3,98	0,160
2000	29415M*	75	115		134		2,00	4,90	0,200
2200	29415EJ		115	82,5	134	82,5	2,00	4,90	0,180
1900	29416M*	80	120		141		2,00	5,80	0,230
2000	29416EJ		120	86,0	141	95,5	2,00	5,80	0,260
1800	29417M*	85	130		153		2,00	6,90	0,310
1800	29417EJ		130	94,0	153	94,0	2,00	6,67	0,240
1700	29418M*	90	135		161		2,00	8,10	0,400
1800	29418EJ		135	99,0	161	99,0	2,00	8,10	0,400
2000	29320EJ	100	130	107,0	147	107,0	1,50	3,95	0,580
1500	29420M*		150	107,0	178	.0.,0	2,50	11,80	0,590
1600	29420EJ		150		175		3,00	10,80	0,590
1600	29322M*	110	145		165		2,00	5,50	0,250
1600	29322EJ	110	145	113.0	165	119,5	2,00	5,40	0,390
1400	29422M*		165	110,0	196	110,0	2,50	14,50	0,850
1400	29422EJ		165		193		2,50	13,50	0,850
1600	29324EJ		160	128.0	181	128,0	2,00	7,41	0,780
1400	29324M	120	160	120,0	184	120,0	2,00	7,60	0,420
1300	29424M*		180		212		3,00	18,10	0,910
1300	29424EJ		180		209		3,00	17,50	0,910
1300	29326M	130	170		198		2,00	9,30	0,540
1500	29326EJ	100	175	138.0	194	143,0	2,00	9,08	1,100
1200	29426M*		195	100,0	229	140,0	3,00	22,50	1,600
1200	29426EJ		195	142,5	227	153,0	3,00	21,60	1,600
1300	29328M	140	185	142,0	211	100,0	2,00	11,00	0,670
1400	29328EJ	140	185	148.0	208	154,0	2,00	10,50	1,200
1200	29428M		205	140,0	239	154,0	3,00	24,20	1,800
1200	29428EJ		205	157,0	239	166,0	3,00	23,00	1,800
1200	29330M	150	195	137,0	222	100,0	2,00	11,50	0,740
1400	29330EJ	150	195	158.0	219	163,0	2,00	10,90	1,300
1100	29430M		220	100,0	257	103,0	3,00	29,40	2,300
1100	29430EJ		220	167.0	275	179.0	3,00	28,20	2,300
1200	29430EJ 29332EJ		210	167,0 169.0	235	178,0			2,000
1100		160		169,0		176,0	2,50	14,40	
	29332M	100	210	17E C	239 270	100.0	2,50	15,20	0,990
1000	29432EJ		235	175,0	2/0	189,0	4,00	33,30	5,400

Spherical Roller Thrust Bearings d = 160 to 320 mm

Dim	ension	S										Basic Load		Fatique
d	D	Н	d ₁	D ₁	В	B ₁	B ₂	B ₃	h	Α	r _s min	Dynamic C _a	Static C _{oa}	load limit P _u
mm												kN		kN
160	320	95	306.0			34	91.0		45.0	99	5.0	1460	4810	451.09
170	280	67	253.6	214.6	42.2	24	-	60.0	32.0	96	3.0	1058	4098	391.84
	280	67		215.0		23	64.0		32.0	96	3.0	833	2950	282.07
400	340	103		240.0	10.0	37	99.0	04.0	50.0	104	5.0	1620	5380	495.46
180	300	73		228.3	46.0	26	-	64.3	35.5	103	3.0	1243	4813	451.38
	300 360	73		231.0		25	69.0		35.0 52.0	103	3.0	984	3530	331.05
100	320	109	342.0	255.0 246.0		39 27	105.0 74.0			110	5.0	1800 1120	6010 4010	544.07
190	320	78 78		239.5	49.0	28	74.0	68.0	38.0 36.0	110 110	4.0 4.0	1440	4840	369.29 445.73
	380	115		270.0	49.0	41	111.0	00.0	55.0	117	5.0	1960	6610	588.75
200	280	48		233.0	32.0	17	45.0		24.0	108	2.1	710	3150	295.42
200	340	85		261.0	32.0	29	81.0		41.0	116	4.0	1300	4740	429.10
	340	85		253.6	53.5	29	01.0	73.0	40.0	116	4.0	1620	5480	496.09
	400	122		284.0	55.5	43	117.0	75.0	59.0	122	5.0	2210	7510	658.70
220	300	48		252.0		17	46.0		24.0	117	2.0	735	3350	306.72
LLO	360	85		280.0		29	81.0		41.0	125	4.0	1340	4970	440.38
	360	85		273.0	55.0	29	00	74.0	41.0	125	4.0	1740	6300	558.22
	420	122		305.0	00.0	43	117.0	,	58.0	132	6.0	2260	7970	685.65
240	340	60		283.0		19	57.0		30.0	130	2.1	770	3450	305.69
	380	85		300.0		29	81.0		41.0	135	4.0	1340	5190	450.76
	380	85		294.8	54.0	29		75.0	40.5	135	4.0	1790	6490	563.67
	440	122	420.0	321.0		43	117.0		59.0	142	6.0	2340	8420	711.30
260	360	60	350.0	302.0		19	57.0		30.0	139	2.1	801	3650	317.01
	420	95		325.0		32	91.0		45.0	148	5.0	1780	6820	576.14
	420	95		320.4	61.0	32		84.0	46.0	148	5.0	2240	8310	702.01
	480	132		346.0		48	127.0		64.0	154	6.0	2730	9870	812.91
280	380	60		323.0		19	57.0		30.0	150	2.1	847	3950	336.69
	440	95		345.0		32	91.0		46.0	158	5.0	1780	7100	589.59
	440	95		342.1	62.0	32		84.0	45.0	158	5.0	2310	8490	705.02
	520	145		380.0		52	140.0		68.0	166	6.0	3230	11840	952.62
	520	145		370.0	95.0	52		125.0	70.0	166	6.0	4470	15750	1267.21
300	420	73		355.0		21	69.0		38.0	162	3.0	1030	4670	387.80
	480	109		375.0	70.0	37	105.0	05.0	50.0	168	5.0	2180	8500	689.11
	480	109		366.7	70.0	36	440.0	95.0	51.0	168	5.0	2650	11000	891.78
	540	145		398.0	OF O	52	140.0	10E 0	70.0	175	6.0	3220	11850	939.57
320	540 440	145 73		370.0 375.0	95.0	55 21	69.0	125.0	70.0	175 172	6.0 3.0	4510 1070	16460 4930	1305.09 402.81
320	500	109							53.0	180	5.0	2180	8850	
	500	109	456.1	395.0 387.0	78.0	37 37	105.0	95.0	53.0	180	5.0	2850	10920	706.80 872.11
	580	155		430.0	70.0	55	149.0	90.0	75.0	191	7.5	3890	14690	1140.89
	580	155		422.0	102.0	55	1-3.0	134.0	74.5	191	7.5	5010	21200	1646.49
	300	100	323.0	422.0	102.0	33		134.0	74.3	191	7.5	3010	21200	1040.43

Limiting Speed	Bearing	Abut	ment a	nd Fillet D	imensio	ns		Weight	Minimum Axial
for Lubrication with Oil	Designation	d	d _a min	d _{b1} max	D _a max	d _{b2} min	r _a max	~	Load Factor
min ⁻¹		mm						kg	
1000	29432M	160	230		274		4.00	35.50	2.900
1200	29334EJ	170	220	178.0	245	188.0	2.50	15.10	2.100
1100	29334M		220		248		2.50	16.00	1.100
940	29434M		245		291		4.00	43.70	3.600
1100	29336EJ	180	235	189.0	262	195.0	2.50	19.10	2.900
1000	29336M		235		266		2.50	20.30	1.600
890	29436M		260		307		4.00	52.00	4.500
940	29338M*	190	250		283		3.00	24.80	2.000
1100	29338EJ		250	200.0	280	211.0	3.00	23.30	2.900
840	29438M		275		325		4.00	60.00	5.500
1150	29240EM	200	235		260		2.00	8.76	1.400
890	29340M*		265		300		3.00	33.00	2.800
950	29340EJ		265	217.0	300	226.0	3.00	28.90	3.100
790	29440M		290		343		4.00	69.00	7.100
1300	29244EM	220	285		260		2.00	9.64	1.400
840	29344M*		285		320		3.00	32.80	3.100
950	29344EJ		285	229.0	316	240.0	3.00	31.60	5.000
750	29444M		310		364		5.00	74.00	7.900
890	29248M	240	285		311		2.00	16.70	1.500
790	29348M*		300		340		3.00	35.30	3.400
900	29348EJ		305	249.0	336	259.0	3.00	33.40	5.300
750	29448M		330		383		5.00	79.00	8.900
890	29252M	260	305		331		2.00	18.50	1.700
750	29352M*		330		374		3.00	48.50	5.800
800	29352EJ		335	273.0	370	286.0	4.00	46.90	8.600
670	29452M		360		419		5.00	105.00	12.000
840	29256M	280	325		351		2.00	19.50	2.000
710	29356M*		350		394		4.00	52.50	6.300
800	29356EJ		355	293.0	390	305.0	4.00	49.50	9.000
630	29456M*		390		453		5.00	132.00	18.000
630	29456EJ		395	300.0	446	320.0	5.00	127.00	31.000
750	29260M	300	355		386		2.50	30.50	2.700
630	29360M*		380		429		4.00	74.00	9.000
700	29360EJ		385	313.0	423	329.0	4.00	68.70	15.000
600	29460M*		410		471		5.00	140.00	18.000
600	29460EJ		415	319.0	465	340.0	5.00	133.00	34.000
710	29264M	320	375		406		2.50	32.90	3.000
630	29364M*		400		449		4.00	77.00	9.800
670	29364EJ		405	332.0	442	347.0	4.00	72.10	15.000
560	29464M*		435		507		6.00	175.00	27.000
560	29464EJ		450	344.0	500	367.0	6.00	164.00	56.000
				55		000	0.00	.00	2 3.000

Spherical Roller Thrust Bearings d = 340 to 800 mm

Dim	ensions	3										Basic Load		Fatique
d	D	Н	d ₁	D ₁	В	B ₁	B ₂	B ₃	h	Α	r _s min	Dynamic C _a	Static C _{oa}	load limit P _u
mm												kN		kN
340	460 540 620 620	73 122 170 170	520.0 561.8 590.0	389.5 424.0 442.2 452.0	112.0	21 41 54 61	69.0 117.0 - 164.0	146.0	37.0 59.0 84.0 82.0	183 192 201 201	3.0 5.0 7.5 7.5	1400 2640 5820 4350	6600 10550 25080 16410	531.02 824.90 1910.47 1250.04
360	500 560	85 122		420.0 444.0		25 41	81.0 117.0		44.0 59.0	194 202	4.0 5.0	1400 2650	6600 11030	519.62 851.01
380	520 670	85 175	505.0			27	81.0 168.0		42.0 85.0	202	4.0 7.5	1550 4700	7510 19100	583.26 1416.35
400	540 620 710	85 132 185	680.0	494.0 530.0		27 44 67	81.0 127.0 178.0		42.0 64.0 89.0	212 225 236	4.0 6.0 7.5	1600 3290 6810	7900 14120 26500	605.60 1056.21 1932.61
420	580 650 730	95 140 185	626.0	484.2 520.0 540.0	-	30 48 67	91.0 135.0 175.0		46.0 68.0 90.0	225 235 244	5.0 6.0 7.5	2300 3410 6850	11230 14700 31020	845.04 1083.92 2238.35
440	680 780	145 206	655.0 745.0	546.0 576.0		49 74	140.0 199.0		70.0 100.0	245 260	6.0 9.5	3860 6280	16850 24650	1225.55 1747.45
480	650 850	103 224	635.0 772.0	554.0 611.6	61.0	33 81	99.0 214.0		55.0 108.0	259 280	6.0 9.5	1920 9646	11000 44398	797.93 3066.92
500	670 750 870	103 150 224	654.0 725.0 801.0		_	33 51 81	99.0 144.0 218.0		55.0 74.0 110.0	268 280 290	5.0 6.0 9.5	2400 4220 10025	12120 18660 48568	870.05 1313.21 3325.29
530	800	160	772.0			54	154.0		76.0	295	7.5	5130	22730	1570.14
600	900	180	850.0	731.0		64	171.0		87.0	335	7.5	6800	31500	2098.84
630	850	132	820.0	724.0		42	127.0		67.0	338	6.0	4250	22500	1505.22
800	1360	335	1300.0			120	324.0		162.0	462	15.0	16340	72360	4321.73

Limiting Speed for Lubrication	Bearing Designation	Abut	ment aı	nd Fillet D	imensior	ıs		Weight	Minimum Axial Load Factor	
with Oil		d	d _a min	d _{b1} max	D _a max	d _{b2} min	r _a max	~		
min ⁻¹		mm						kg		
850	29268EM	340	400	-	422	-	2.50	33.00	5.400	
560	29368M		430		484		4.00	103.00	14.000	
380	29468EJ		475	363	530	366.0	6.00	211.00	79.000	
500	29468M		465		451		6.00	218.00	34.000	
630	29272M	360	420		461		3.00	51.80	5.400	
560	29372M		450		504		4.00	107.00	15.000	
600	29276M	380	440		480		3.00	52.80	7.100	
470	29476EM		504		570		6.00	263.00	46.000	
600	29280M	400		460	500	3.0		55.30	7.800	
500	29380M			498	557	5.0		150.00	25.000	
450	29480EM			550	615	6.0		306.00	88.000	
700	29284EM	420	500	-	525	-	4.00	73.00	16.000	
450	29384M			523	585	5.0		170.00	27.000	
430	29484EM			592	684	8.0		308.00	63.000	
450	29388M	440		548	614	5.0		190.00	35.000	
400	29488M			592	684	8.0		407.00	76.000	
500	29296M	480		558	603	4.0		96.50	15.000	
340	29496EM			660	735	8.0		518.00	82.000	
470	292/500M	500		578	622	4.0		101.00	18.000	
400	293/500M			613	680	5.0		220.00	44.000	
340	294/500EM		685	-	755	-	8.00	548.00	290.000	
380	293/530M	530		651	724	6.0		286.00	65.000	
330	293/600EM	600		735	815	6.0		390.00	120.000	
350	292/630M	630		730	789	5.0		211.00	63.000	
220	294/800M	800		1055	1200	12.0		2010.00	650.000	

Insert Ball Bearings and Insert Ball Bearing Units

Insert ball bearings are single row deep groove ball bearings with double sealing on both sides. The outer ring has a spherical surface and that is why it can tilt in the housing with the same spherical surface. It can accommodate eventual misalignments. The inner bearing ring is wider than the outer one and it is fixed on the shaft:

- by means of eccentric locking collar, design UA
- by means of screws, design UC

Bearings are filled with grease for the whole bearing life. Housing designs allow eventual relubrication by means of a lubricating nipple.

Bearings are suitable for arrangements on short shafts and for arrangements where small thermal contraction occur which are compensated by bearing axial clearance or design adaptability, on which bearing housings are fixed.

The material of insert ball bearing housings are grey cast iron or steel sheet and from the point of view of design the housings can be in pillow block - designation SG, SA or flanged - designation FG, FM, FB, FE. In the housing there is a spherical hollow and they form together a unit which enables an economic solution with a simple arrangement design. They are used in agricultural machines, transportation equipments, foodmaking machines, etc.

Boundary Dimensions

Boundary dimensions of insert ball bearings correspond to the standard ISO 2264, ISO 3228 and bearing housings and eccentric locking collars to the standard ISO 3145.

Designation

Designation of insert ball bearings, corresponding housings and complete units is in the dimension tables of this publication.

Cage

Bearings have cages pressed of steel which are not designated.

Tolerance

Bearings have a uniform bore diameter tolerance H6. This tolerance secures by shaft machining in the tolerance h always a loose fit. For shaft manufacturing usually tolerances h8 and h11 are sufficient. For greater loads and rotational speeds it is necessary to select tolerances h6, h7.

Radial Clearance

Commonly manufactured insert ball bearings have normal radial clearance which is not indicated and its size and extent is the same as for single row deep groove ball bearings of the same dimensions.

Delivery of bearings with different radial clearance should be discussed with the supplier in advance.

Limiting Rotational SpeedThis parameter is dependent on the arrangement on the shaft and from the point of view of shaft diameter the dependence in the dimension tables is worked out.

Insert Ball Bearings d = 20 to 40 mm

Dime	nsions							Basic Lo Dynami	oad Rating c Static	Bearing Designation	Weight
d	D	В	С	r _s min	d ₁ max	S	C _a	C _r	C _{or}		
mm								kN			kg
20	47	31.4	14	1.0		12.7	4.1	12.77	C EC	UC204	0.146
25	52	44.4	15	1.0	38.0	17.5	4.1	14.0	6.56 7.90	UA205	0.146
25	52 52	34.1	15	1.0	36.0	14.3	4.1	14.0	7.90	UC205	0.230
	52	34.1	15	1.0		7.5	4.1	14.0	7.90	UD205	0.170
	52	31.0	15	0.6	38.0	7.5		14.0	7.90	UE205	0.120
	52	27.7	15	1.0	30.0	7.5		14.0	7.90	US205	0.150
30	62	48.4	16	1.0	45.0	18.3	4.8	19.4	11.20	UA206	0.360
30	62	38.1	16	1.0	45.0	15.9	4.8	19.4	11.20	UC206	0.300
	62	50.1	16	1.0		8.0	4.0	19.4	11.20	UD206	0.200
	62	35.7	16	0.6	45.0	8.0		19.4	11.20	UE206	0.133
	62	30.3	16	1.0	45.0	8.0		19.4	11.20	US206	0.210
35	72	51.1	17	1.1	56.5	18.8	5.3	25.6	15.20	UA207	0.550
00	72	42.9	17	1.1	50.5	17.5	5.3	25.6	15.20	UC207	0.410
	72	12.0	17	1.1		8.5	0.0	25.6	15.20	UD207	0.278
	72	38.9	17	0.6	56.5	9.5		25.6	15.20	UE207	0.420
	72	34.0	17	1.1	00.0	8.5		25.6	15.20	US207	0.330
40	80	56.3	18	1.1	60.0	21.4	5.9	32.6	19.80	UA208	0.700
.0	80	49.2	18	1.1	00.0	19.0	5.9	32.6	19.80	UC208	0.550
	80		18	1.1		9.0		32.6	19.80	UD208	0.360
	80	43.7	18	0.6	60.0	11.0		32.6	19.80	UE208	0.570
	80	39.5	18	1.1	00.0	9.0		32.6	19.80	US208	0.450

Limiting	Speed for I	Lubrication v	with	
Grease	ameter Tole	ranco		
h6	h7	h8	h9	h11
min ⁻¹				
8500	5300	3800	1300	850
7100	4500	3200	1000	710
7100	4500	3200	1000	710
7100	4500	3200	1000	710
7100	4500	3200	1000	710
6300	4000	2800	890	630
6300	4000	2800	890	630
0000	4000	2000	000	000
6300	4000	2800	890	630
6300	4000	2800	890	630
5300	3300	2200	750	530
5300	3300	2200	750	530
5300	3300	2200	750	530
5300	3300	2200	750	530
4700	3000	1900	670	470
4700	3000	1900	670	470
4700	3000	1900	670	470
4700	3000	1900	670	470

Pillow Block Units with Insert Ball Bearing d = 25 to 40mm

Dime	ensions											
d	D	L	Е	Н	H ₁	H ₂	Α	A ₁	N	N1	m	
nm												
25	52 52	130 130	102 102	70.5 70.5	36.5 36.5	14 14	34 34	22 22	17 17	12 12	M10 M10	
30	62 62	155 155	118 118	84.0 84.0	42.9 42.9	17 17	39 39	24 24	20 20	15 15	M12 M12	
35	72 72	160 160	128 128	93.0 93.0	47.6 47.6	19 19	44 44	29 29	20 20	15 15	M12 M12	
40	80 80	175 175	133 133	100.0 100.0	49.2 49.2	19 19	50 50	32 32	20 20	15 15	M12 M12	
Whe	n using b	earings -	- type UE	E into hous	sings SG	designa	tion of un	it is SGE				

Basic Load	d Rating	Designation	n of		Weight	
Dynamic C _r	Static C _{or}	Unit	Housing	Bearing	~	
kN					kg	
14.0 14.0 19.4 19.4 25.6 25.6	7.94 7.94 11.20 11.20 15.20 15.20	SGA205 SGC205 SGA206 SGC206 SGA207 SGC207	SG205 SG205 SG206 SG206 SG207 SG207	UA205 UC205 UA206 UC206 UA207	0.74 0.68 1.20 1.12 1.60 1.46	
32.6 32.6	19.80 19.80	SGA208 SGC208	SG208 SG208	UC207 UA208 UC208	1.95 1.80	

Square Flanged Units with Insert Ball Bearing d = 25 to 40 mm

Dime	ensio	ns								Basic Loa Dynamic	ad Rating Static	Weight	Designat	ion of	
			_										Unit	Housing	Bearing
d	D	L	Е	Α	A ₁	A ₂	A ₃	N	m	C _r	C _{or}	~			
mm										kN		kg			
25	52	95	70.0		29.5	13 19		12	M10	14.0	7.9	0.83	FGA205		UA205
30		95 108	70.0 82.5	38.8 50.1	31	13 19 13 20	0.0	12 12	M10 M10	14.0 19.4	7.9 11.2	0.77 1.20	FGC205 FGA206	FG206	UC205 UA206
35	72	108 118	82.5 92.0		33.5	1320).5	12 15	M10 M12	19.4 25.6	11.2 15.2	1.12 1.55	FGC206 FGA207	FG207	UC206 UA207
40		118 130	92.0 101.5	45.9 57.9	33.5 36.5	1420		15 15	M12 M12	25.6 32.6	15.2 19.8	1.41 2.05	FGC207 FGA208		UC207 UA208
	80	130	101.5	53.5	36.5	1423	3.0	15	M12	32.6	19.8	1.90	FGC208	FG208	UC208
14/1-		alna l	oodor-	tura-	HE let	a barr	lnac	FO 4-	olana!	on of unit !	• FCF				
Wh	en u	sing b	earings	- type	UD int	o hous	sings	FG de	esignati	on of unit i	s FGD				
Wh	en u	sing b	earings	- type	US inte	o hous	sings	FG de	signation	on of unit i	s FGS				

Oval Flanged Units with Insert Ball Bearing d = 25 to 40 mm $\,$

Dime	ensio	ns									ad Rating	Weight	Designation	on of	
										Dynamic	Static		Unit	Housing	Bearing
d	D	L	Н	E	Α	A ₁	A ₂	N	m	C _r	C _{or}	~			
mm										kN		kg			
25	52 52	123 123	70 70		45.9 38.8	29.5 29.5	13 13	12 12	M10 M10	14.0 14.0	7.9 7.9	0.64 0.58	FMA205 FMC205		UA205 UC205
30	62 62	142 142	83	116.5 116.5	50.1	31.0	13 13	12	M10 M10	14.4 14.4	11.2 11.2	1.08	FMA206 FMC206	FM206	UA206 UC206
35	72 72	156 156	92	130.0 130.0	53.3	33.5	14 14	14 14	M12 M12	25.6 25.6	15.2 15.2	1.45	FMA207 FMC207	FM207	UA207 UC207
40	80 80	172 172	102	143.8 143.8	58.9	37.0	14 14	15 15	M12 M12	32.6 32.6	19.8 19.8	1.75 1.60	FMA208 FMC208	FM207	UA208 UC208
										on of unit i on of unit i					
										on of unit i					

Triangle Pressed Flanged Units with Insert Ball Bearing d = 25 to 35 mm $\,$

Dime	ensio	ns									Basic Loa Dynamic	ad Rating Static	Weight	Designati	on of	
d	D	Н	Е	H,	H ₂	Α	A ₁	A ₂	N	m	C _r	C _{or}	~	Unit	Housing	Bearing
mm											kN		kg			
25	52 52	99.5 99.5		34.5 34.5			9.0 9.0		8.8	M8 M8	14.0 14.0	7.9 7.9	0.36 0.30	FBA205 FBC205		UA205 UC205
30	62	112.5	90.5 90.5	38.5	71	30.1 22.2	9.5 9.5	2.5 2.5	10.5 10.5	M10 M10	19.4 19.4	11.2 11.2	0.58 0.50	FBA206 FBC206	FB206	UA206
35			100.0								25.6 25.6	15.2 15.2	0.81 0.67	FBA207 FBC207		
Wh	en u	sing b	earings	s - type	e UD	into h	nousir	ngs F	B de	signati	on of unit i on of unit i on of unit i	s FBD				

Round Pressed Flanged Units with Insert Ball Bearing d = 20 to 35 $\,\text{mm}$

Dime	ensic	ns								Basic Loa Dynamic	ad Rating Static	Weight	Designation	on of	
										Dynamic	Otatio		Unit	Housing	Bearing
d	D	Н	Е	H ₂	Α	A ₁	A_2	N	m	C _r	C_{or}				
mm										kN		kg			
20	47	91.0	71.5	55	18.3	8.0	2.0	8.7	M8	12.7	6.5	0.27	FFC204	FE204	UC204
25	52	95.0	76.0	60	26.9	8.5	2.0	8.7	M8	14.0	7.9	0.40		FE205	
	52	95.0	76.0	60	19.8	8.5	2.0	8.7	M8	14.0	7.9	0.35		FE205	
30		112.7	90.5	71	30.1	8.7	2.5	10.5	M10	19.4	11.2	0.65		FE206	
0.5		112.7	90.5	71	22.2	8.7	2.5	10.5		19.4	11.2	0.55		FE206	
35		122.0 122.0	100.0	81 81	32.3 24.1	9.5 9.5	2.5	10.5 10.5	M10	25.6 25.6	15.2 15.2	0.86		FE207	
	12	122.0	100.0	01	24.1	9.5	2.5	10.5	IVITO	23.0	13.2	0.00	I LUZUI	I LZU1	00201
Wh	en 11	sina be	arings	- type	UE into	hous	inas I	E des	signatio	on of unit is	FEE				
										on of unit is					
										on of unit is					

Sheet Pillow Block Units with Insert Ball Bearing d = 25 to 35 mm $\,$

Dime	ensio	ns								Basic Loa Dynamic	d Rating Static	Weight	Design Housing	ation of g Housing with bearing
d	D	Α	A ₁	Е	L	Н	H,	H ₂	N	C _r	C _{or}	~		Trousing with bearing
mm										kN		kg		
25	52	32	21.5	86	108	56.6	28.6	4	11.2	14.0	7.9	0.33	SA205	SAD205 SAE205 SAS205
30	62	38	23.8	95	119	66.3	33.3	4	11.2	19.4	11.2	0.53		SAD206 SAE206 SAS206
35	72	42	27.0	106	130	78.2	39.7	5	11.2	25.6	15.2	0.81	SA207	SAD207 SAE207 SAS207
			UD b											
In u	inits	SAE SAS	UE be	earing	s are	used								
111 0	iiilo	U A3	33 00	Janny	o are	useu								

Spherical Plain Bearings

Spherical plain bearings are radial sliding bearings consisting of one inner and one outer ring which have spherical functional surfaces. Bearings are determined for arrangements where great radial forces at slow tilting or oscillating are acting and for arrangements where space adjustability of both components is secured. Besides radial load, bearings can also accommodate an axial load of certain magnitude in both directions.

Spherical plain bearings are produced of bearing steel. Rings are hardened, ground or phosphatizated. Spherical plain bearings require minimum service. At first mounting the bearings are filled with grease and are relubricated in certain time periods according to operating conditions. For spherical plain bearings lubrication mainly greases with EP or MoS, additives are suitable.

Boundary Dimensions

Boundary dimensions of spherical plain bearings - Type GE comply with the international standard ISO 6124/1 and bearings - type GEW with enlarged inner ring the international standard ISO 6124/2.

Designation

Spherical plain bearings designation in standard design is shown in the dimension table and consists of type designation (GE or GEW) and size (digit indicates bore diameter in mm), e.g. GE30. Deviations from standard design (radial clearance, sealing, dimension change) are indicated by additional symbols according to ISO 02 4608 (except for symbol E), placed after the basic designation. Symbol E - phosphatizated bearing surface, e.g. GE30E.

Tolerance

Spherical plain bearings are produced in normal tolerance class which is not indicated. Deviation values correspond to the international standard ISO 6125.

Radial Clearance

Spherical plain bearings are commonly produced with normal radial clearance which is not indicated. Radial clearance values are shown in the following table.

Bore Diameter			Radial C	learance		
	C	2	nor	mal	(C3
over to	min	max	min	max	min	max
mm			μ	m		
12 20	10	40	40	82	82	124
20 35	12	50	50	100	100	150
35 60	15	60	60	120	120	180

Spherical Plain Bearings d = 14 to 60 mm

Dime	ensio	ns							Radia		Basic Load		Bearing	Weight
d	D	В	С	d ₁	d ₂	r _{1s}	r _{2s} min	α	Cleara norma min		Dynamic C _r	Static C _{or}	Designation	
						111111	111111		111111	Шах				
mm								0	μm		kN			kg
14	26	12	9	-	22.0	0.6	0.6	8	30	60	17	85	GE15EX2	0.025
15	26	12	9	-	22.0	0.6	0.6	8	40	82	17	85	GE15E	0.025
		12	9	-	22.0	0.6	0.6	8	40	82	17	85	GE15EX1	0.031
20	35		12	-	29.0	0.6	0.6	9	40	82	30	146	GE20E	0.061
	35		12		29.0	0.6	0.6	4	40	82	30	146	GEW20E	0.070
25	42		16	-	35.5	0.6	0.6	7	50	100	48	240	GE25E	0.110
	42		16	30.5		0.6	0.6	4	50	100	48	240	GEW25E	0.120
30	47		18	-	40.7	0.6	0.6	6	50	100	62	310	GE30E	0.140
	47		18	-	40.7	0.6	0.6	4	50	100	62	310	GE30E-2RS	
32	52		18		44.0	0.6	1.0	4	50	100	67	335	GEW32E	0.200
35	55		20	-	47.0	0.6	1.0	6	50	100	80	400	GE35E	0.220
- 10	55		20	-	47.0	0.6	1.0	4	50	100	80	400	GE35E-2RS	
40	62		22	-	53.0	0.6	1.0	7	60	120	100	500	GE40E	0.300
45	62			46.0		0.6	1.0	4	60	120	100	500	GEW40E	0.340
45	68		25	-	60.0	0.6	1.0	7	60	120	127	640	GE45E	0.400
50	75		28	-	66.0	0.6	1.0	6	60	120	156	780	GE50E	0.540
55	75 85	40	28 32		66.0 74.0	0.6	1.0	7	60	120 120	156 190	780 950	GEW50E GE55E	0.560
60	90		36	-	80.0	1.0	1.0	6	60	120	245	1220	GE60E	0.700 1.000
60	90	44	30	-	60.0	1.0	1.0	0	60	120	240	1220	GEOUE	1.000

Abutr	ment and Fill	et Dimensio	ns					
d	d _a min	d _a max	D _a max	D _a min	r _a max	r _ь max		
mm								
14	18.0	18.0	23	21	0.6	0.5		
15	18.0	18.0	23	21	0.6	0.5		
	18.0 23.0	18.0	23	21	0.6	0.5		
20	23.0	24.0	31	28	0.3	0.5		
	24.0	26.0	31	28	0.6	0.6		
25	28.0	29.0	38	33	0.6	0.5		
	29.5	31.5	38	33	0.6	0.6		
30	33.0	34.0	43	38	0.6	0.5		
	33.0	34.0	43	38	0.6	0.5		
32 35	36.0 39.0	38.0	47 50	41 44	0.8	0.6		
35	39.0	40.0 40.0	50	44	0.8 0.8	0.6 0.6		
40	44.0	45.0	57	50	0.8	0.6		
40	44.0	45.0	57	50	0.8	0.6		
45	49.0	50.0	63	56	0.8	0.6		
45 50	54.0	56.0	70	61	0.8	0.6		
	56.0	58.0	70	61	0.8	0.6		
55	60.0	62.0	80	70	1.0	0.8		
60	65.0	66.0	84	73	1.0	0.8		

Accessories of Rolling Bearing

Machine components serving for fixing rolling bearings on the shaft or in the housing bore are involved in this category of accessories.

Adapter Sleeves

Adapter sleeves are used for fixing double row self-aligning ball bearings and double row spherical roller bearings with tapered bore (K) on cylindrical shafts. Material for adapter sleeves is steel with tensile strength 400 to 600 MPa.

Boundary dimensions of adapter sleeves are in the dimension tables and correspond to the standard ISO 113/1.

Adapter sleeve designation including nuts and locking devices is in the dimension tables. Adapter sleeve utilization for individual bearings with tapered bore is indicated in the corresponding part devoted to double row self - aligning and double row spherical roller bearings.

Abutment and fillet dimensions for bearings with adapter sleeves are shown in the following table.

Nom Dian	inal neter	H2 .		eeve Ty H3			H23			H30		H31			H32	
		Bear		mensio												
d	d _o	d _b min	02 a _a min	d _b min	22 a _a min	03	d _b min	32 a _a min	23	d _b min	30 a _a min	d _b min	31 a _a min	22	d _b min	32 a _a min
mm																
20	17	23	5	23	5	8	24	-	5	-	-	_	-	-	-	_
25	20	28	5	28	5	6	30	-	5	-	-	-	-	-	-	-
30	25	33	5	33	5	6	35	-	5	-	-	-	-	-	-	-
35	30	38	5	39	5	8	40	-	5	-	-	-	-	-	-	-
40	35	43	5	44	5	5	45	-	5	-	-	-	-	-	-	-
45	40	48	5	50	8	5	50	-	5	-	-	-	-	-	-	-
50	45	53	5	55	10	5	56	-	5	-	-	-	-	-	-	-
55	50	60	6	60	19	6	61	-	6	-	-	-	-	-	-	-
60	55	64	<u>5</u>	65	8	5	66	-	5	-	-	-	-	-	-	-
65	60	70	5	70 75	8	5 5	72 76	-	5 5	-	-	-	-	-	-	-
70 75	60 65	75 80	5	80	12	5	82	-	5	-	-	-	-	-	-	-
80	70	85	5	85	12	5	88		5	-		-				
85	75	90	6	91	12	6	94	-	6	-	-	-	-	-	-	-
90	80	95	6	96	10	6	100	18	6	-	-	-	-	-	-	-
100	90	106	7	108	8	7	110	19	7	-	-	-	-	-	-	-
110	100	116	7	118	6	9	121	17	7	-	-	117	7	-	-	-
120	110	-	-	-	-	-	131	17	7	127	7	128	7	11	-	-
130	115	-	-	-	-	-	142	21	8	137	8	138	8	8	-	-
140	125	-	-	-	-	-	152	22	8	147	8	149	8	8	-	-
150	135	-	-	-	-	-	163	20	8	158	8	160	8	15	-	-
160	140	-	-	-	-	-	174	18	8	168	8	170	8	14	-	-
170	150	-	-	-	-	-	185	18	8	179	8	180	8	10	-	-
180 190	160 170	-	-	-	-	-	195 206	22 21	<u>8</u> 9	189 199	<u>8</u> 9	191 202	<u>8</u> 9	18 21	-	-
200	180		-	-	-	-	216	20	10	210	10	212	10	24	-	-
220	200		_	_	-	_	236	11	10	231	12	233	10	22	-	-
240	220	_		_			257	6	11	251	11	254	11	19	_	
260	240						278	2	11	171	13	276	11	25		
280	260						299	11	12	292	12	296	12	28		
300	280									313	12	318	12	32	321	12
320	300									334	13	338	13	39	343	13
340	320									355	14	360	14	-	-	-
360	340									375	14	380	14	-	-	-
Ahı	ıtment	and f	illet dir	mensio	ns d	D	ar	are sh	own in c	limensio	n table	s of				
do	ible ro	w self	– alin	nina an	nd doub	ole row	x a r _{a max} spheric	al roller	bearing		table	0 01				
450		0011	αg.				2,00.10		200.111	g-·						

Withdrawal Sleeves

Withdrawal sleeves are used for fixing double row spherical roller bearings with tapered bore (K) on cylindrical shafts. Withdrawal sleeve material is steel with tensile strength 400 to 600 MPa.

Boundary dimensions of withdrawal sleeves and corresponding withdrawal nuts, which must be ordered separately, correspond to the standard ISO 2982.

Withdrawal sleeve and corresponding withadrawal nut designation to individual double row spherical roller bearings with tapered bore is shown in dimension tables devoted to these bearings.

Abutment and fillet dimensions for bearings with withdrawal sleeves $(d_{a_{min}}, D_{a_{max}}, r_{a_{max}})$ are the same as for bearings without withdrawal sleeves and are indicated in corresponding dimension tables.

Locknuts and Withdrawal Nuts

Locknuts and withdrawal nuts are used for fixing inner bearing rings on adapter sleeves or directly on the shaft. Withdrawal nuts serve for dismounting of double row spherical roller bearings with tapered bore fixed by means of a withdrawal sleeve. Material for nuts is steel with minimum tensile strength 410 MPa.

Boundary dimensions of locknuts and withdrawal nuts shown in the dimension tables correspond to the standard ISO 2982.

Locknuts are produced in normal design (type KM) and in precision design (type KMA) and are shown in the dimension tables of this publication. When determining the axial runout parameter, following table is valid:

Nut Size Design	ation	Limiting Axial Ru Values of Abutm	nout ent Face
over	to	KM	KMA
		mm	
	10	0,04	0,025
10	20	0,05	0,030
20	25	0,05	0,030
25	30	0,06	0,040
30	40	0,06	0,050

Locking Washers

Locking washers serve for locating of locknuts and are produced of steel with minimum tensile strength 274 MPa. Locking washer boundary dimensions are in the dimension tables of this publication and correspond to the standard ISO 2982.

Snap Rings for Bearings with Snap Ring Groove on Outer Ring

Snap rings are used for simple axial fixing of bearings with a groove on outer ring (N) in housings. Material for snap rings is spring steel. Boundary dimensions for snap rings correspond to the standard ISO 464.

Snap rings are designated by a number indicating the outer bearing diameter D and a number indicating minimum snap ring width f, e.q. 52/1.02.

In practice also a commercial designation wich indicates the ring type R and outer bearing diameter in mm, e.g. R52, is used.

In the dimension tables snap rings for single row ball bearings - type 60, 62, 63 and 64 in N design are shown.

Snap rings can also be used also for bearings in different design, their delivery should be discussed with supplier in advance. Snap rings are delivered separately.

Adapter Sleeves d_o = 20 to 75 mm

Dim	ensions					Sleeve	Appropr		Weight
d _o	d	d _z	D	L	а	Designation incl. Nut and Locking	Compor Nut	nents Locking	~
mm									kg
20	25	M25x1.5	38	26	8	H205	KM5	MB5	0.070
	25	M25x1.5	38	29	8	H305	KM5	MB5	0.075
05	25	M25x1.5	38	35	8	H2305	KM5	MB5	0.087
25	30	M30x1.5	45	27	8	H206 H306	KM6	MB6	0.099
	30 30	M30x1.5	45	31 38	8		KM6 KM6	MB6 MB6	0.109
30	35	M30x1.5	45 52	29	<u>8</u> 9	H2306 H207	KM7	MB7	0.126 0.125
30	35	M35x1.5 M35x1.5	52	35	9	H307	KM7	MB7	0.125
	35	M35x1.5	52	43	9	H2307	KM7	MB7	0.142
35	40	M40x1.5	58	31	10	H208	KM8	MB8	0.174
33	40	M40x1.5	58	36	10	H308	KM8	MB8	0.174
	40	M40x1.5	58	46	10	H2308	KM8	MB8	0.109
40	45	M45x1.5	65	33	11	H209	KM9	MB9	0.227
40	45	M45x1.5	65	39	11	H309	KM9	MB9	0.248
	45	M45x1.5	65	50	11	H2309	KM9	MB9	0.280
45	50	M50x1.5	70	35	12	H210	KM10	MB10	0.274
.0	50	M50x1.5	70	42	12	H310	KM10	MB10	0.303
	50	M50x1.5	70	55	12	H2310	KM10	MB10	0.362
50	55	M55x2	75	37	12	H211	KM11	MB11	0.308
	55	M55x2	75	45	12	H311	KM11	MB11	0.345
	55	M55x2	75	59	12	H2311	KM11	MB11	0.420
55	60	M60x2	80	38	13	H212	KM12	MB12	0.346
	60	M60x2	80	47	13	H312	KM12	MB12	0.394
	60	M60x2	80	62	13	H2312	KM12	MB12	0.481
60	65	M65x2	85	40	14	H213	KM13	MB13	0.401
	65	M65x2	85	50	14	H313	KM13	MB13	0.458
	65	M65x2	85	65	14	H2313	KM13	MB13	0.557
65	75	M75x2	98	43	15	H215	KM15	MB15	0.707
	75	M75x2	98	55	15	H315	KM15	MB15	0.831
	75	M75x2	98	73	15	H2315	KM15	MB15	1.050
70	80	M80x2	105	46	17	H216	KM16	MB16	0.882
	80	M80x2	105	59	17	H316	KM16	MB16	1.030
	80	M80x2	105	78	17	H2316	KM16	MB16	1.280
75	85	M85x2	110	50	18	H217	KM17	MB17	1.020
	85	M85x2	110	63	18	H317	KM17	MB17	1.180
	85	M85x2	110	82	18	H2317	KM17	MB17	1.450

Adapter Sleeves d_o = 80 to 180 mm

Dime	nsions					Sleeve	Appropri		Weight
d _o	d	d _z	D	L	а	Designation incl. Nut and Locking	Compon Nut	Locking	~
mm									kg
80	90	M90x2	120	62	18	H218	KM18	MB18	1.190
80	90	M90x2	120	65	18	H318	KM18	MB18	1.370
	90	M90x2	120	86	18	H2318	KM18	MB18	1.690
85	95	M95x2	125	55	19	H219	KM19	MB19	1.370
03	95	M95x2	125	68	19	H319	KM19	MB19	1.560
	95	M95x2	125	90	19	H2319	KM19	MB19	1.920
90	100	M100x2	130	58	20	H220	KM20	MB20	1.490
	100	M100x2	130	71	20	H320	KM20	MB20	1.690
	100	M100x2	130	97	20	H2320	KM20	MB20	2.150
100	110	M110x2	145	81	21	H3122	KM22	MB22	2.250
	110	M110x2	145	63	21	H222	KM22	MB22	1.930
	110	M110x2	145	77	21	H322	KM22	MB22	2.180
	110	M110x2	145	105	21	H2322	KM22	MB22	2.740
110	120	M120x2	145	72	22	H3024	KML24	MBL24	1.930
	120	M120x2	155	88	22	H3124	KM24	MB24	2.640
	120	M120x2	155	112	22	H2324	KM24	MB24	3.190
115	130	M130x2	155	80	23	H3026	KML26	MBL26	2.850
	130	M130x2	165	92	23	H3126	KM26	MB26	3.660
	130	M130x2	165	121	23	H2326	KM26	MB26	4.600
125	140	M140x2	165	82	24	H3028	KML28	MBL28	3.160
	140	M140x2	180	97	24	H3128	KM28	MB28	4.340
	140	M140x2	180	131	24	H2328	KM28	MB28	5.550
135	150	M150x2	180	87	26	H3030	KML30	MBL30	3.890
	150	M150x2	195	111	26	H3130	KM30	MB30	5.520
110	150	M150x2	195	139	26	H2330	KM30	MB30	6.630
140	160	M160x3	190	93	28	H3032	KML32	MBL32	5.210
	160 160	M160x3	210 210	119 147	28 28	H3132 H2332	KM32 KM32	MB32 MB32	7.670
150	170	M160x3 M170x3	200	101	29	H3034	KML34	MBL34	9.140 5.990
130	170	M170x3	220	122	29	H3134	KM34	MB34	8.360
	170	M170x3	220	154	29	H2334	KM34	MB34	10.200
160	180	M180x3	210	109	30	H3036	KML36	MBL36	6.830
100	180	M180x3	230	131	30	H3136	KM36	MB36	9.500
	180	M180x3	230	161	30	H2336	KM36	MB36	11.300
170	190	M190x3	220	112	31	H3038	KML38	MBL38	7.450
	190	M190x3	240	141	31	H3138	KM38	MB38	10.800
	190	M190x3	240	169	31	H2338	KM38	MB38	12.600
180	200	M200x3	240	120	32	H3040	KML40	MBL40	9.190
	200	M200x3	250	150	32	H3140	KM40	MB40	12.100
	200	M200x3	250	176	32	H2340	KM40	MB40	13.900

Withdrawal Sleeves $d_0 = 35$ to 95 mm

Mindrawal Mut	Dimensions								Corresp. Withdrawal	Weight
35 40 M45x1.5 30 32 6 5 AH308 KM9 0.093 40 M45x1.5 40 43 7 6 AH2308 KM9 0.129 40 45 M50x1.5 32 34 6 6 AH309 KM10 0.112 45 M50x1.5 44 47 7 6 AH2309 KM10 0.163 45 50 M55x2 35 38 7 6 AH310X KM11 0.138 50 M55x2 35 38 7 6 AH310X KM11 0.138 50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 M55x2 40 43 8 7 AH311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 M65x2 57	l _o	d	d _z	1	l ₁	h	Z	Designation		~
40 M45x1.5 40 43 7 6 AH2308 KM9 0.129 40 45 M50x1.5 32 34 6 6 AH309 KM10 0.112 45 M50x1.5 44 47 7 6 AH2309 KM10 0.163 45 50 M55x2 35 38 7 6 AH310X KM11 0.236 50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2	nm									kg
40 M45x1.5 40 43 7 6 AH2308 KM9 0.129 40 45 M50x1.5 32 34 6 6 AH309 KM10 0.112 45 M50x1.5 44 47 7 6 AH2309 KM10 0.163 45 50 M55x2 35 38 7 6 AH310X KM11 0.236 50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2	_	40	MAEVAE	20	20	c	F	AUGOG	KMO	0.000
40 45 M50x1.5 32 34 6 6 AH309 KM10 0.112 45 M50x1.5 44 47 7 6 AH2309 KM10 0.163 45 50 M55x2 35 38 7 6 AH310X KM11 0.138 50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 57 61 10 7 AH2312X KM13 0.194 60 M55x2 57 61 10 7 AH2312X KM13 0.194 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 70	5				-					
45 M50x1.5 44 47 7 6 AH2309 KM10 0.163 45 50 M55x2 35 38 7 6 AH310X KM11 0.138 50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 75 <t< td=""><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	0									
45 50 M55x2 35 38 7 6 AH310X KM11 0.138 50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH2312X KM13 0.194 60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2 61 64 11 7 AH2313 KM15 0.299 65 M75x2 61 64 11 7 AH2313 KM15 0.399 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.466 70 75 M85x2 69 72 12 7 AH2315X KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 M85x2 69 72 12 7 AH2316X KM18 0.602 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 M50x2 72 75 75 12 7 AH2316X KM18 0.602 80 M50x2 75 78 13 7 AH2317X KM19 0.431 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 57 78 13 7 AH2317X KM19 0.465 90 M100x2 80 83 14 7 AH2318X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.578 95 M105x2 85 89 15 8 AH2319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.586 100 M110x2 10 M110x2 10 M110x2 10 M110x2 10 M	U					-				
50 M55x2 50 53 8 6 AH2310X KM11 0.236 50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2 61 64 11 7 AH2313 KM15 0.256 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.290 70 M80x2 65	5									
50 55 M60x2 37 40 7 6 AH311X KM12 0.162 55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2 61 64 11 7 AH2313 KM15 0.399 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.290 70 75 M85x2 46 49 8 7 AH315 KM17 0.326 75 M85x2	3									
55 M60x2 54 57 9 6 AH2311X KM12 0.257 55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2 61 64 11 7 AH2313 KM15 0.399 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.290 70 75 M85x2 46 49 8 7 AH315 KM17 0.326 75 75 M85x2 49 72 12 7 AH2315X KM17 0.536 75 80 <	0						6			
55 60 M65x2 40 43 8 7 AH312X KM13 0.194 60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2 61 64 11 7 AH2313 KM15 0.290 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.466 70 75 M85x2 46 49 8 7 AH315 KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72	Ŭ			-						
60 M65x2 57 61 10 7 AH2312X KM13 0.299 60 65 M75x2 42 45 8 7 AH313 KM15 0.296 65 M75x2 61 64 11 7 AH2313 KM15 0.399 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.290 70 M85x2 46 49 8 7 AH315 KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.326 75 80 M90x2 72 75 12 7 AH2316X KM18 0.367 80 M90x2 72 75	5									
60 65 M75x2 42 45 8 7 AH313 KM15 0.256 65 M75x2 61 64 11 7 AH2313 KM15 0.399 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.466 70 75 M85x2 46 49 8 7 AH315 KM17 0.536 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2	_			-						
65 M75x2 61 64 11 7 AH2313 KM15 0.399 65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.466 70 75 M85x2 46 49 8 7 AH315 KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.465 85 90 M100x2	0									
65 70 M80x2 44 47 8 7 AH314 KM16 0.290 70 M80x2 65 68 12 7 AH2314X KM16 0.466 70 75 M85x2 46 49 8 7 AH315 KM17 0.536 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.465 85 90 M100x2 53 57 9 7 AH318X KM20 0.578 90 M100x2	•									
70 75 M85x2 46 49 8 7 AH315 KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.431 85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2	5									
70 75 M85x2 46 49 8 7 AH315 KM17 0.326 75 M85x2 69 72 12 7 AH2315X KM17 0.536 75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.431 85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2		70	M80x2	65	68	12	7	AH2314X		
75 80 M90x2 48 52 8 7 AH316 KM18 0.367 80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.676 85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.586 95 100 M110x2	0									
80 M90x2 72 75 12 7 AH2316X KM18 0.602 80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.676 85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.588 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 <t< td=""><td></td><td>75</td><td>M85x2</td><td>69</td><td>72</td><td>12</td><td>7</td><td>AH2315X</td><td>KM17</td><td>0.536</td></t<>		75	M85x2	69	72	12	7	AH2315X	KM17	0.536
80 85 M95x2 52 56 9 7 AH317X KM19 0.431 85 M95x2 75 78 13 7 AH2317X KM19 0.676 85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768	5	80	M90x2	48	52	8	7	AH316	KM18	0.367
85 M95x2 75 78 13 7 AH2317X KM19 0.676 85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768		80	M90x2	72	75	12	7	AH2316X	KM18	0.602
85 90 M100x2 53 57 9 7 AH318X KM20 0.465 90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768	0	85	M95x2	52	56	9	7	AH317X	KM19	0.431
90 M100x2 63 67 10 7 AH3218X KM20 0.578 90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768		85	M95x2				7	AH2317X		0.676
90 M100x2 80 83 14 7 AH2318X KM20 0.777 90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768	5	90	M100x2	53	57			AH318X	KM20	0.465
90 95 M105x2 57 61 10 8 AH319X KM21 0.537 95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768										
95 M105x2 85 89 15 8 AH2319X KM21 0.888 95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768										
95 100 M110x2 59 63 10 8 AH320X KM22 0.586 100 M110x2 75 77 12 7 AH3220X KM22 0.768	0									
100 M110x2 75 77 12 7 AH3220X KM22 0.768										
	5									
100 M110x2 90 94 15 8 AH2320X KM22 1.000			-	-						
		100	M110x2	90	94	15	8	AH2320X	KM22	1.000

Withdrawal Sleeves d_o = 100 to 180 mm

Dimer	nsions						Sleeve	Corresp.	Weight
d _o	d	d _z	1	l _t	h	Z	Designation	Withdrawal Nut	~
mm									kg
111111									kg
100	110	M125x2	68	72	11	8	AH3122	KM25	1.280
105	110	M120x2	68	72	11	8	AH3122X	KM24	0.786
	110	M125x2	82	86	12	8	AH3222X	KM25	1.060
	110	M125x2	98	102	16	8	AH2322X	KM25	1.350
110	120	M140x2	75	79	12	8	AH3124	KM28	1.670
	120	M140x2	105	109	17	8	AH2324	KM28	2.470
115	120	M130x2	60	64	13	8	AH3024X	KM26	0.737
	120	M130x2	75	79	12	8	AH3124X	KM26	0.948
	120	M135x2	90	94	14	8	AH3224X	KM27	1.310
	120	M135x2	105	109	17	8	AH2324X	KM27	1.610
125	130	M140x2	67	71	14	8	AH3026X	KM28	0.907
	130	M140x2	78	82	12	8	AH3126X	KM28	1.080
	130	M145x2	98	102	15	8	AH3226X	KM29	1.580
105	130	M145x2	115	119	19	8	AH2326X	KM29	1.970
135	140	M150x2	68	73	14	10	AH3028X	KM30	0.996
	140	M150x2	83	88	14	10	AH3128X	KM30	1.260
	140 140	M155x3	104 125	109	15 20	10	AH3228X AH2328X	KM31	1.810
1.4E	150	M155x3	72	130 77	15	10	AH2328X AH3030X	KM31 KM32	2.340 1.120
145	150	M160x3 M165x3	96	101	15	10	AH3130X	KM33	1.750
	150	M165x3	114	119	18	10	AH3230X	KM33	2.210
	150	M165x3	135	140	24	10	AH2330X	KM33	0.000
150	160	M170x3	77	82	16	10	AH3032	KM34	2.010
130	160	M180x3	103	108	16	10	AH3132	KM36	3.180
	160	M180x3	124	130	20	12	AH3232	KM36	4.020
	160	M180x3	140	146	24	12	AH2332	KM36	4.690
160	170	M180x3	85	90	17	10	AH3034	KM36	2.400
100	170	M190x3	104	109	16	10	AH3134	KM38	3.410
	170	M190x3	134	140	24	12	AH3234	KM38	3.410
	170	M190x3	146	152	24	12	AH2334	KM38	5.230
170	180	M190x3	92	98	17	12	AH3036	KM38	2.800
	180	M200x3	116	122	19	12	AH3136	KM40	4.160
	180	M200x3	105	110	17	10	AH2236	KM40	3.670
	180	M200x3	140	146	24	12	AH3236	KM40	5.290
	180	M200x3	154	160	26	12	AH2336	KM40	5.940
180	190	Tr205x4	96	102	17	12	AH3038	HML41T	3.280
	190	Tr210x4	125	131	19	12	AH3138	HM42T	4.730
	190	Tr210x4	112	117	18	10	AH2238	HM42T	4.150
	190	Tr210x4	160	167	26	14	AH2338	HM42T	6.530
	190	Tr210x4	145	152	25	14	AH3238	HM42T	5.800

Locknuts d = M10 x 0.75 to M200 x 3

Dimensions d	D	d ₁	В	b	t	Nut Designation KM	KMA	Corresp. Locking Washer	Weight
mm									kg
M10x0.75	18	13.5	4	3	2.0	KM0		MB0	0.004
M12x1	22	17	4	3	2.0	KM1		MB1	0.007
M15x1	25	21	5	4	2.0	KM2		MB2	0.007
M17x1	28	24	5	4	2.0	KM3		MB3	0.013
M20x1	32	26	6	4	2.0	KM4		MB4	0.019
M25x1.5	38	32	7	5	2.0	KM5	KMA5	MB5	0.015
M30x1.5	45	38	7	5	2.0	KM6	KMA6	MB6	0.023
M35x1.5	52	44	8	5	2.0	KM7	KMA7	MB7	0.053
M40x1.5	58	50	9	6	2.5	KM8	KMA8	MB8	0.085
M45x1.5	65	56	10	6	2.5	KM9	KMA9	MB9	0.120
M50x1.5	70	61	11	6	2.5	KM10	KMA10	MB10	0.150
M55x2	75	67	11	7	3.0	KM11	KMA11	MB10	0.160
M60x2	80	73	11	7	3.0	KM12	KMA12	MB12	0.170
M65x2	85	79	12	7	3.0	KM13	KMA13	MB13	0.170
M70x2	92	85	12	8	3.5	KM14	KMA14	MB14	0.240
M75x2	98	90	13	8	3.5	KM15	KMA15	MB15	0.240
M80x2	105	95	15	8	3.5	KM16	KMA16	MB16	0.400
M85x2	110	102	16	8	3.5	KM17	KMA17	MB17	0.450
M90x2	120	108	16	10	4.0	KM18	KMA18	MB18	0.560
M95x2	125	113	17	10	4.0	KM19	KWATO	MB19	0.660
M100x2	130	120	18	10	4.0	KM20	KMA20	MB20	0.700
M105x2	140	126	18	12	5.0	KM21	KMA21	MB21	0.700
M110x2	145	133	19	12	5.0	KM22	KMA22	MB22	0.970
M115x2	150	137	19	12	5.0	KM23	KWAZZ	MB23	1.010
M120x2	155	138	20	12	5.0	KM24	KMA24	MB24	1.080
M125x2	160	148	21	12	5.0	KM25	KMA25	MB25	1.190
M130x2	165	149	21	12	6.0	KM26	KMA26	MB26	1.250
M135x2	175	160	22	14	6.0	KM27	KWAZO	MB27	1.550
M140x2	180	160	22	14	6.0	KM28		MB28	1.600
M150x2	195	171	24	14	6.0	KM30		MB30	2.030
M160x3	210	182	25	16	7.0	KM32		MB32	2.590
M170x3	220	193	26	16	7.0	KM34		MB34	2.800
M180x3	230	203	27	18	8.0	KM36		MB36	3.070
M190x3	240	214	28	18	8.0	KM38		MB38	3.390
M200x3	250	226	29	18	8.0	KM40		MB40	3.690
WIZOOXO	200	LLO	25	10	0.0	KWITO		WIDTO	0.000

Locking Washers d₁ = 10 to 200 mm

Dime	nsions						Locking	Weight
							Washer	100 pcs
d ₁	d_2	d_3	В	f,	f_2	M	Designation	~
		~	~					
mm								kg
10	13.5	21	1.00	3	3	8.5	MB0	0.130
12	17.0	25	1.00	3	3	10.5	MB1	0.200
15	21.0	28	1.00	4	4	13.5	MB2	0.260
17	24.0	32	1.00	4	4	15.5	MB3	0.320
20	26.0	36	1.00	4	4	18.5	MB4	0.350
25	32.0	42	1.25	5	5	23.0	MB5	0.640
30	38.0	49	1.25	5	5	27.5	MB6	0.780
35	44.0	57	1.25	6	5	32.5	MB7	1.040
40	50.0	62	1.25	6	6	37.5	MB8	1.230
45	56.0	69	1.25	6	6	42.5	MB9	1.520
50	61.0	74	1.25	6	6	47.5	MB10	1.600
55	67.0	81	1.50	8	7	52.5	MB11	1.960
60	73.0	86	1.50	8	7	57.5	MB12	2.530
65	79.0	92	1.50	8	7	62.2	MB13	2.900
70	85.0	98	1.50	8	8	66.5	MB14	3.340
75	90.0	104	1.50	8	8	71.5	MB15	3.560
80	95.0	112	1.80	10	8	76.5	MB16	4.640
85	102.0	119	1.80	10	8	81.5	MB17	5.240
90	108.0	126	1.80	10	10	86.5	MB18	6.230
95	113.0	133	1.80	10	10	91.5	MB19	6.700
100	120.0	140	1.80	12	10	96.5	MB20	7.650
105	126.0	145	1.80	12	12	100.5	MB21	8.260
110	133.0	154	1.80	12	12	105.5	MB22	9.400
115	137.0	159	2.00	12	12	110.5	MB23	10.800
120	135.0	148	2.00	14	12	115.0	MBL24	7.000
	138.0	164	2.00	14	12	115.0	MB24	10.500
125	148.0	170	2.00	14	12	120.0	MB25	11.800
130	149.0	175	2.00	14	12	125.0	MB26	11.300
135	160.0	185	2.00	14	14	130.0	MB27	14.400
140	160.0	192	2.00	16	14	135.0	MB28	14.200
150	171.0	205	2.00	16	14	145.0	MB30	15.500
160	182.0	217	2.50	18	16	154.0	MB32	22.200
170	193.0	232	2.50	18	16	164.0	MB34	24.700
180	203.0	242	2.50	20	18	174.0	MB36	16.800
190	214.0	252	2.50	20	18	184.0	MB38	27.800
200	226.0	262	2.50	20	18	194.0	MB40	29.300

Snap Rings for Bearings with Snap Ring Groove on Outer Ring D = 32 to 200 $\,\text{mm}$

Dime	nsions					Weight 100 pcs	Commercial Designation			Correspo Bearing	
D	D ₂ ¹⁾	е	f	g ¹⁾	r	100 pcs	Designation	Type	now Daii	Dearing	
_	max	max	max	max	r ₂ min	~		60	62	63	64
mm						kg					
32	36.7	3.25	1.12	3	0.4	0.287	R32	6002N	6201N		
35	39.7	3.25	1.12	3	0.4	0.313	R35	6003N	6202N		
40	44.6	3.25	1.12	3	0.4	0.356	R40		6203N		
42	46.3	3.25	1.12	3	0.4	0.371	R42	6004N		6302N	
47	52.7	4.04	1.12	4	0.4	0.521	R47	6005N	6204N		
52	57.9	4.04	1.12	4	0.4	0.578	R52		6205N	6304N	
55	60.7	4.04	1.12	4	0.6	0.609	R55	6006N			
62	67.7	4.04	1.70	4	0.6	1.030	R62		6206N	6305N	64031
68	74.6	4.85	1.70	5	0.6	1.360	R68	6008N			
72	78.6	4.85	1.70	5	0.6	1.440	R72		6207N	6306N	64041
75	81.6	4.85	1.70	5	0.6	1.500	R75	6009N			
80	86.6	4.85	1.70	5	0.6	1.600	R80	6010N	6208N	6307N	64051
85	91.6	4.85	1.70	5	0.6	1.700	R85		6209N		
90	96.5	4.85	2.46	5	0.6	2.670	R90	6011N	6210N	6308N	64061
95	101.6	4.85	2.46	5	0.6	2.770	R95	6012N			
00	106.5	4.85	2.46	5	0.6	2.910	R100		6211N		64071
110	116.5	4.84	2.46	5	0.6	3.200	R110		6212N	6310N	64081
115	121.6	4.85	2.46	5	0.6	3.350	R115	6015N	6213N		
120	129.7	7.21	2.82	7	0.6	5.990	R120			6311N	64091
125	134.7	7.21	2.82	7	0.6	6.240	R125		6214N		
130	139.7	7.21	2.82	7	0.6	6.480	R130		6215N		6410N
140	149.7	7.21	2.82	7	0.6	6.980	R140		6216N	6313N	64111
145	154.7	7.21	2.82	7	0.6	7.230	R145		6217N		
150	159.7	7.21	2.82	7	0.6	7.480	R150	6020N		6314N	6412N
160	169.7	7.21	3.10	10	0.6	7.980	R160		6218N		6413N
170	182.9	9.60	3.10	10	0.6	12.400	R170		6219N		
180	192.9	9.60	3.10	10	0.6	13.200	R180	6024N	6220N		6414N
190	202.9	9.60	3.10	10	0.6	13.900	R190			6318N	6415N
00	212.9	9.60	3.10	10	0.6	14.600	R200	6026N	6222N	6319N	6416N
1) Di	imensions	D _a and a	are valid fo	or snap ring	inserted i	n bearing					

Rolling **Elements**

Balls

Balls as a rolling bearing component are made of the same material as bearing rings. The material hardness after processing (hardening) is 61 to 65 HRC.

Balls with diameter $D_w = 3.175$ to 17.462 mm are supplied within the tolerance classes 10, 16, 20, 28, 40, and 100. Balls with diameter $D_w = 18.256$ to 33.338 mm are supplied within the tolerance classes 16, 20, 28, 40 and 100 according to the international standard ISO 3290.

The delivery of balls in different tolerance class or made of a different material should be discussed in advance.

Within each tolerance class, balls of the same nominal diameter D., are graded into grades according to mean grading deviation of the nominal ball diameter in the lot $\Delta D_{_{wm}}$.

Each grade is packed separately and is marked in documentation and package by the value of the nominal diameter mean deviation in the lot in μ m, e.g.

Balls 6 - 40 + 4

This means that the ball has the nominal diameter 6 mm, tolerance class 40 and has the actual diameter within 6.003 to 6.005 mm.

Limiting D	Limiting Deviation Diameter and Form. Limiting Surface Roughness.											
Tolerance Class	D _w over	to	$\Delta_{\sf Dwm}$	V _{DWL} max	V _{Dws} max	Δ max	R _a max					
	mm		μm									
3	0.25	12	±5	0.13	0.08	0.08	0.012					
5	0.25	12	±5	0.25	0.13	0.13	0.020					
10	0.25	25	±9	0.50	0.25	0.25	0.025					
16	0.25	25	±10	0.80	0.40	0.40	0.032					
20	0.25	38	±10	1.00	0.50	0.50	0.040					
28	0.25	38	±12	1.40	0.70	0.70	0.050					
40	0.25	50	±16	2.00	1.00	1.00	0.080					
100	0.25	120	±40	5.00	2.50	2.50	0.125					
200	0.25	150	±60	10.00	5.00	5.00	0.200					

nominal ball diameter

- limiting deviation of mean ball diameter as individual component

- ball diameter variation in a lot

V_{DwS} - individual ball diameter variation

- deviation from roundness /out-of-roudness/

- surface roughness

Nominal E	Diameter	Weight 1000 pcs	Nominal Dia	ameter	Weight 1000 pcs
D _w		~	D_{w}		~
	In	Lon		See also	T.
mm	inch	kg	mm	inch	kg
1.000		0.004	12.700	1/2	8.42
1.150		0.006	13.494	17/32	10.10
2.381	3/32	0.055			
2.450		0.060	14.288	9/16	12.00
3.175	1/8	0.132	15.081	19/32	14.10
3.969	5/32	0.257	15.875	5/8	16.40
4.762	3/16	0.444	16.669	21/32	19.10
5.000		0.514	17.462	11/16	21.90
5.556	7/32	0.705	18.256	23/32	25.00
5.953	15/64	0.867	19.050	3/4	28.40
6.000		0.887	19.844	25/32	32.10
6.350	1/4	1.050	20.638	13/16	36.20
6.747	17/64	1.260	21.431	27/31	40.00
7.144	9/32	1.500	22.225	7/8 29/32	45.10
7.938 8.500	5/16	2.060 2.520	23.019	15/16	50.20
8.731	11/32	2.730	23.812 24.606	31/32	55.50 61.20
9.525	3/8	3.550	25.400	1	67.30
10.000	3/0	3.110	26.988	1 1/16	80.80
10.319	13/32	4.510	28.575	1 1/10	96.00
10.500	10/02	4.723	30.162	1 3/16	113.00
11.112	7/16	5.640	31.750	1 1/4	132.00
11.450	7710	6.160	33.338	1 5/16	152.00
11.906	15/32	6.930	00.000	1 0/10	102.00
	10,0=				

Cylindrical Rollers

Cylindricals rollers are produced with convex contour of the rolling surface or in design with straight line contour and end crowned towards both faces (ZB).

After being made of rolling bearing steel the cylindrical rollers have hardness 60 to 65 HRC.

Cylindrical rollers are usually delivered in the tolerance class III (DIN 5402). Delivery of rollers made of different dimensions or materials in than dimension tables of the catalogue should be discussed in advance.

Within each tolerance class, the cylindrical rollers of the same nominal diameter \mathbb{O}_{w} and nominal length L_{w} are graded according to the mean grading deviation of the nominal cylindrical roller diameter and length. Example of cylindrical roller designation is shown in documentation and packing.

Short cylindrical roller 8 x 12 ZB III + 2/-3

this means that the cylindrical roller has nominal diameter 8 mm and nominal length 12mm in ZB design, tolerance class III and has actual diameter 8.001 to 8.003 mm and actual length 11.994 to 12.000.

Limiting Coordinates of Cylindrical Roller	r Rounding	
Nominal Diameter	_	nensions of Rounding Coordinates
r	r _{s min}	r _{s max}
mm	mm	
0.3	0.2	0.5
0.5	0.3	0.8
0.8	0.5	1.2
1.0	0.7	1.5
1.5	1.1	2.1
2.0	1.5	2.7

Tolerance Class	D _w over	to	Δ_{Dwmp}	V _{DWL}	V _{Dwp}	Δ	V_{Dwmp}	Face Convexity	R _a
				max		max	max	max	max
	mm		μm						
l.	-	18	+10.25/-16.25	0.5	0.25	0.3	0.3	2	0.08
	18	26	+10.25/-16.25	0.5	0.25	0.4	0.5	2	0.08
II.	-	18	+10.25/-16.25	1.0	0.5	0.5	0.5	2	0.16
	18	26	+10.25/-16.25	1.0	0.5	0.8	1.0	2	0.16
III.	-	18	+11/-17	2.0	1.0	1.0	1.0	2	0.16
	18	26	+11/-17	2.0	1.0	1.5	1.0	2	0.16
IV.	-	18	0/-45	3.0	2.0	2.0	2.0	3	0.32
	18	26	0/-45	3.0	2.0	3.0	2.0	3	0.32

D... - short cylindrical roller nominal diameter

 $\Delta_{D_{wmp}}^{w}$ - limiting deviation of cylindrical roller diameter as individual component

 $V_{\rm DwL}$ - variations of cylindrical roller diameter in a lot $V_{\rm Dwn}$ - variation of individual cylindrical roller diameter

- roudness deviation

V_{Dwmp} - conicity

- cylindrical surface roughness

Dimension	and sh	ape Dev	iations, except Conicit	ty and Conv	exity Are Va	alid in Central Sec	ction of Cylindrical Rollers.
Tolerance Class	L _w over	to	Δ_{Lws}	V _{LwL}	S _w	Face Convexity	$R_{_{\!a}}$
				max	max	max	max
	mm		μm				
I.	-	15	+2/-7	3	3	2	0.08
-	15	26	+2/-7	3	3	2	0.08
	26	40	+2.5/-7.5	5	5	3	0.08
II.	-	15	+3/-15	6	6	3	0.16
	15	40	+3/-15	6	6	5	0.16
III.	-	26	+10/-20	6	6	3	0.16
	26	40	+10/-20	6	6	5	0.32
IV.	-	10	0/-32	10	16	3	0.63
	10	18	0/-32	10	20	3	0.63
	18	30	0/-32	15	25	5	0.63
	30	40	0/-50	20	30	5	0.63

Short cylindrical roller nominal length
 limiting length deviations of rollers as individual components
 roller length variation in a lot
 lateral run-out
 face surface roughness

Cylindrical Rollers D_w = 3 to 22 mm

Dimensions		Weight 100 pcs	Dimensions		Weight 100 pcs	Dimensions		Weight 100 pcs
D _w x L _w	r	~	D _w x L _w	r	~	D _w x L _w	r	~
mm		kg	mm		kg	mm		kg
3x5	0.3	0.027	8x8	0.5	0.308	15x17	0.8	2.340
3.175x4.400	0.3	0.027	8x10	0.5	0.300	15x17 15x22	0.8	3.000
3.5x5	0.3	0.027	8x12	0.5	0.465	15x24	0.8	3.300
0.000	0.5	0.007	8x16	0.5	0.403	15x25	0.8	3.440
4x6	0.3	0.058	OXIO	0.0	0.027	15x30	0.8	4.130
4x8	0.3	0.078	9x9	0.5	0.440	15x32	0.8	4.390
4.5x4.5	0.3	0.068	9x10	0.5	0.496	IOXOL	0.0	1.000
	0.0	0.000	9x13	0.5	0.450	16x16	0.8	2.480
5x6	0.3	0.091	9x14	0.5	0.680	16x17	0.8	2.660
5x8	0.3	0.121				16x24	0.8	3.730
5x10	0.3	1.520	10x10	0.5	0.600	16x27	0.8	4.230
5.349x9.520	0.3	0.166	10x11	0.5	0.670	16x35	0.8	5.500
5.350x9.5	0.3	0.150	10x14	0.5	0.850	16x47	0.8	7.370
5.5x5.5	0.3	0.100	10x15	0.5	9.200	16.200x50	0.8	7.490
5.5x8	0.3	0.146	10x16	0.5	0.980			
			10x20	0.5	1.225	17x17	1.0	2.970
6x6	0.3	0.130	10x30	0.5	1.830	17x24	1.0	4.200
6x8	0.3	1.780				17x34	1.0	5.900
6x10	0.3	0.219	11x11	0.8	0.810			
6x12	0.3	0.261	11x12	0.8	0.890	18x18	1.0	3.570
6.350x6.350	0.4	0.158	11x15	0.8	1.100	18x19	1.0	3.770
6.350x12	0.5	0.296	11x16	0.8	1.180	18x26	0.8	5.100
6.5x6.5	0.5	0.166	11x18	0.8	1.330	18x30	1.0	5.960
6.5x9	0.5	0.230	11x22	8.0	1.620	18x36	1.0	7.150
6.5x11	0.5	0.258						
			12x12	0.8	1.040	19x19	1.0	4.160
7x7	0.5	0.206				19x20	1.0	4.440
7x10	0.5	0.296	13x13	8.0	1.330	19x28	1.0	6.100
7x14	0.5	0.417	13x20	8.0	2.040	19x32	1.0	7.030
7.350x14	0.5	0.463						
7.5x7.5	0.5	0.254	14x13.800	0.8	1.650	20x20	1.0	4.850
7.5x9	0.5	0.310	14x14	0.8	1.650	20x30	1.0	7.300
7.5x11	0.5	0.374	14x15	0.8	1.800	20x40	1.0	9.770
7.5x17	0.4	0.583	14x20	0.8	2.380			-
7.5x19	0.4	0.652	14x22	0.8	2.640	21x21	1.0	5.600
7.5x22	0.4	0.757	14x26	0.8	3.100	21x22	1.0	9.940
7.5x25.5	0.5	0.884	14x28	0.8	3.340	21x42	1.0	11.200
7.937x6.350	0.5	0.241	4545	0.0	0.040	0000	1.0	0.400
7.937x7.937	0.4	0.302	15x15	0.8	2.040	22x22	1.0	6.400
7.950x6.350	0.3	0.240	15x16	0.8	2.200	22x24	1.0	7.110

Cylindrical Rollers D_w = 22 to 53 mm

Dimensions		Weight 100 pcs	Dimensions		Weight 100 pcs	Dimensions		Weight 100 pcs
D _w x L _w	r	~	D _w x L _w	r	~	D _w x L _w	r	~
mm		kg	mm		kg	mm		kg
22x34 22x44 22x48	1.0 1.0 1.0	10.000 12.900 14.200	38x38 38x62	2.0 2.0	33.300 55.000			
			40x40	2.0	38.900			
23x23 23x34	1.0 1.0	7.400 11.200	42x42	2.0	45.400			
24x24 24x26	1.0	8.400 9.100	45x45	2.0	55.800			
24x36 24x40	1.0 1.0	12.600 14.100	48x48 48x52	2.0 2.0	67.700 73.700			
24x52	1.0	18.100	53x53	2.0	91.000			
25x25 25x36	1.5 1.5	9.500 13.700						
26x26 26x40	1.5 1.5	10.700 16.400						
26x48 26x55	1.5 1.5	19.800 22.600						
27x48	1.5	21.400						
28x28 28x30	1.5 1.5	13.300 14.300						
28x32 28x44	1.5 1.5	15.300 21.000						
28x56	1.5	26.900						
30x30 30x33	1.5 1.5	16.300 18.000						
30x48 30x63	1.5 1.5	26.200 34.600						
32x32 32x52	1.5 1.5	19.900 32.400						
32x64	1.5	40.000						
34x34 34x55	2.0 2.0	23.900 38.700						

Special Rolling Bearings

In addition to standard and modified bearings shown in this catalogue, special rolling bearings are also made. As a rule, they have non-standard dimensions and cannot be involded in the standard types, they are made of different materials and are determined for usage in machines or equipment arrangements whose design does not allow standard bearings.

Dime	nsions D	D ₁	B ₁	$B_{\!\scriptscriptstyle 2}$	В	Basic Loa Dynamic C _r	d Rating Static C _{or}	Fatique load limit P _u	Weight ~	Bearing Designation
mm						kN			kg	
74.6	120	88.34	31.0	31.8	92.0	196	255	31.10	3.0	PLC 58-11
76.2	130	88.71	31.0	31.8	92.2	196	255	30.81	3.1	PLC 58-9-1
140.0	215	225.00	38.1	10.7	42.9	116	139	4.74	5.3	PLC 010-3

Double Row Spherical Roller Bearings Single Row Cylindrical Roller Bearings

Dime	nsions			Basic Load	Rating	Fatique load	Weight ~	Bearing Designation	
d	D	B ₁	В	Dynamic C _r	Static C _{or}	limit P _u			
mm				kN		kN	kg		
60	160,00	-	110,0	467	629	74,55	12,4	PLC 58-12	
110	288,92	80,0	115,9	786	978	96,95	40,0	PLC 511-14	1)
218	393,76	90,5	156,0	1200	1760	45,74	83,8	PLC 411-27-1	2)
220	393,76	90,5	156,0	1200	1760	45,67	83,0	PLC 411-27	2)
240	440,07	90,5	156,0	1248	1920	47,33	92,0	PLC 412-7	2)
238	440,07	90,5	156,0	1248	1920	47,40	92,0	PLC 412-7-1	2)
260	431,8	96,8	170	1140	1940	47,41	86,5	PLC 412-11	
320	622,37	160,4	272,0	3100	4950	103,65	353,0	PLC 412-8	2)
	1) Truck Ro	ller.							
	2) Split cylin	ndrical rolle	r bearing fo	r rolling mills					

Double Row Spherical Roller Bearing Single Row Deep Groove Ball Bearing

Dime	nsions			Basic Load Dynamic	Rating Static	Fatique load limit	Weight ~	Bearing Designation	ation
d	D	B ₁	В	C,	C _{or}	P _u			
mm				kN		kN	kg		
65	158.8	48.0	70.0	212	250	29.48	7.36	PLC 58-2	
559	761.0	36.5	38.2	232	425	7.52	51.30	KL 761	1)
	1) Cinalo re	w hall had	ring for pool	ina maahinaa i	n wood proces	oina industry			

Double Row Spherical Roller Bearings

Dimer	nsions D	B ₁	В	Basic Load Dynamic C _r	Rating Static C _{or}	Fatique load limit P _u	Weight ~	Bearing Designation	on
mm				kN		kN	kg		
100	150,00	62,00	50,0	310	550	62,73	3,7	PLC 58-6	1)
100	180,00	69,00	82,0	480	710	78,27	10,3	PLC 59-5	2)
110	180,00	69,00	82,0	501	839	91,52	7,7	PLC 59-10	4)
120	215,00	76,00	98,0	678	1020	106,56	13,5	PLC 510-23	1)
440	720,00	226,00	270,0	4300	9000	647,74	389,0	PLC 512-5	3)

- 1) Double row spherical roller bearing with plastic cage and increased angle of misalignment up to 7° for gearbox of mobile concrete mixer.
- 2) Double row spherical roller bearing with increased angle of misalignment up to 7° for gearbox of mobile concrete mixer.
- 3) Double row spherical roller bearing with split and extended outer ring and increased angle of misalignment up to 7°.
- 4) Bearing with extended outer ring for angle of misalignment up to 6°

Double Row Spherical Roller Bearings

Dime	nsions			Basic Loa	d Rating	Fatique load limit	Weight ~	Bearing Designation	
d	D	B ₁	B ₁		Static C _{or}	P _u			
111,6	215	90	76	564	803	84,53	14,4	PLC 510-20	
130	220	73		570	1080	111,35	12,2	PLC 59-7	1)
130	225	80		570	1080	110,88	12,2	PLC 510-9	
	1) Double rou	u apharical rall	or boari	a according	to dimonoional pla	on LIIC for aviobayon	of railway yahi	alaa with jaurnal diamatar 120 mm	,

1) Double row spherical roller bearing according to dimensional plan UIC for axleboxes of railway vehicles with journal diameter 130 mm.

Double Row Spherical Roller Bearings

PLC 512-39

Dime	nsions	D,	В	В,	Basic Load Dynamic C.	Rating Static C _{or}	Fatique load limit	Weight ~	Bearing Designation			
mm		D ₁		D ₁	kN	O _{or}	kN	kg				
750 670	1000 1150	-	360 500	_ 345	6380 12960	17230 23450	1096.15 1 474,40	1220 1710	PLC 512-37 ¹⁾ PLC 512-39 ²⁾			

- 1) Double row spherical roller bearing with split outer ring for arrangement of bucket excavator journal.
- 2) Split double row spherical roller bearing for arrangement of steel converter.

Single Row Deep Groove Ball Bearings

Dimer	nsions D	В	Basic Load Dynamic C _r	Static	Fatique load limit P _u	Limiting Speed for Lubrication Grease		Weight ~	Bearing Designation
mm	mm		kN		kN	min ⁻¹		kg	
17.0	35.0	9.0	8.20	5.30	0.24	18000	21000	0.033	PLC 03-29
22.2	36.9	16.5	5.11	6.31	0.29	1)		0.034	PLC 03-33
10.4	35.0	10.0	4.82	1.36	0.06	12600	17000	0.069	PLC 03-79
	1) Steeri	ng colum	n						

Thrust Ball Bearings

Dime	ensions D	В	Basic Load Dynamic C _a	Rating Static C _{oa}	Fatique load limit P _u	Limiting S for Lubrica Grease		Weight ~	Bearing Designation		ensior d ₂	d ₃	Н,	r _{1,2}
mm			kN		kN	min ⁻¹		kg		mm				
30.0	49.2	12.0	18.8	31.6	1.44	4200	-	0.086	511Z30	36.0	30.2	_	11.0	0.6
00.0	49.2	-	17.4	28.2	1.28	4200	-	0.083	PLC 23-4	36.0			11.0	
	49.2	13.6	17.4	28.2	1.28	4200	-	0.085	PLC 23-5	36.0	30.8	40	12.5	0.6
35.0	53.6	12.8	20.0	38.3	1.74	4000	-	0.093	511Z35	38.0	37.0	-	12.0	0.6
	53.6	15.5	20.0	38.3	1.74	3500	-	0.111	PLC 24-2	38.0	37.0	40	14.7	0.6
17.0	35.0	12.3	9.6	15.5	0.70	1)		0.029	PLC 23-7	17.2	32.4	-	10.4	0.5
45.2	65.0	10.8	27.8	57.5	2.61	3800	5000	0.100	PLC 24-4	-	-	-	-	-
40.1	59.9	10.8	26.9	51.2	2.33	3800	5000	0.090	PLC 24-5	-	-	-	-	-
55.2	78.0	11.6	34.8	78.4	3.56	3200	4200	0.150	PLC 25-6	-	-	-	-	-
	1) Th	he bear	rina is intend	ed for pendul	um motion	or low freat	ency rotation	on.						

Double Row Ball Bearings

Dime	ensions		Basic Load	d Rating	Fatique load	Limiting Speed for Lubrication v	vith	Weight	Bearing Designation		
d	D	В	Dynamic C _r	Static C _{or}	limit P _u	Grease	Oil	~	J		
mm			kN		kN	min ⁻¹		kg			
25	52	43.8	24.3	17.7	0.80	5250	-	0.301	PLC 77-1		
	52	37.0	24.3	17.7	0.80	5250	-	0.301	PLC 14-28		
36	62	16.0	24.1	27.1	1.23	4410	-	0.192	PLC 14-29		

Double Row Angular Contact Ball Bearings

В

PLC 14-25 PLC 14-24 PLC 15-22

Dimensions			Basic Loa	d Rating	Fatique load				Bearing Designation	Dimensions						
d	D	В	Dynamic C _r	Static C _{or}	limit P _u	Grease		~	Designation	d	D ₁	B ₁	s	r _{1,2} min	r _{3,4} min	а
mm			kN		kN	min ⁻¹		kg		mn	mm					
25	65.5	25.4	30.4	26.6	1.21	7100	8400	0.466	PLC 15-21)	25	74	16.5	4.4	1.1	-	40.0
	55.0	20.0	19.2	15.5	0.70	8500	10000	0.280	PLC 14-26	25	62	28.0	-	-	1.0	26.8
30	60.0	37.0	36.9	30.4	1.38	7000	8300	0.450	PLC 14-25	30	-	-	-	2.5	0.5	50.5
34	64.0	37.0	36.9	31.0	1.41	6300	7500	0.320	PLC 14-24	34	-	-	-	2.8	0.3	53.3
35	68.0	37.0	39.8	38.3	1.74	6500	-	0.534	PLC 15-12 ²⁾	35	-	-	-	2.5	0.3	50.5
37	72.0	37.0	43.8	39.8	1.81	5000	6000	0.550	PLC 15-22	37	-	-	-	2.8	0.3	57.0

The bearing has pressed steel cage that is guided on the balls. Bearing are originally intended for shaft arrangement in gear boxes of motor vehicles.

The bearing has cage made of reinforced polyamide that is guided on the balls, special seal rings on both sides and is filled with grease.

Single Row Cylindrical Roller Bearings for Railway Vehicle Axles

Bearing Designation	Dimensions $\label{eq:ddd} \mbox{d} \mbox{D} \mbox{B} \mbox{r}_{\mbox{\tiny smin}} \mbox{r}_{\mbox{\tiny 1sm}}$				r _{1smin}	d ₁ d ₂	F	Ratin Dyn.		Fatique load limit P _u	Maximum Speed of Rail Vehicle	Radial Clearance min. max.	Axial Clearance min. ma		Precision Class
	mm							kN			km.h ⁻¹	mm	mm	kg	
PLC 410-13	120	240	80	3	7.5	160.8	150	553	742	75.86	160	0.120 0.16	0.3 0.9	16.8	P0
PLC 410-13-2	120	240	80	3	7.5	160.8	150	553	742	75.86	160	0.120 0.16	0.3 0.9	16.0	P0
PLC 410-14	120	240	80	3	7.5	160.8	150	553	742	75.86	160	0.120 0.16	0.3 0.9	16.8	P0
PLC 410-14-2	120	240	80	3	7.5	160.8	150	553	742	75.86	160	0.120 0.16	0.3 0.9	16.0	P0
PLC 410-15	130	240	80	3	7.5	170.5	159	517	752	76.25	160	0.135 0.18	0.3 0.9	15.2	P0
PLC 410-15-2	130	240	80	3	7.5	170.5	159	517	752	76.25	160	0.135 0.18	0.3 0.9	14.5	P0
PLC 410-16	130	240	80	3	7.5	170.5	159	517	752	76.25	160	0.135 0.18	0.3 0.9	15.2	P0
PLC 410-16-2	130	240	80	3	7.5	170.5	159	517	752	76.25	160	0.135 0.18	0.3 0.9	14.5	P0
PLC 410-33-2	130	240	80	3	7.5	170.5	157	540	775	78.58	200	0.135 0.18	0.3 0.9	15.1	P6
PLC 410-34-2	130	240	80	3	7.5	170.5	157	540	775	78.58	200	0.135 0.18	0.3 0.9	15.1	P6

Bearings correspond to the requirements of international standards ISO, EN and UIC.

Used for axle arrangements of passenger cars and wagons, motor coaches and locomotives. Bearings have a solid brass cage centered on cylindrical rollers, or on the ribs of the outer ring (in this case the cage has lubrication grooves). Inner rings and semi - units are mutually interchangeable.

Bearing Units

Double Row Ball Bearings for Textile Machines and Instrument Technics

Bearings for textile machines are designed for high speed and relatively low load, i.e. they have high dimension and operation accuracy, which secures their high utilization value and operating reliability. Bearings create a nonseparable unit consisting of a shaft and a cylindrical bush arranged in a rotary way on two rows of balls. Light one - side cages made of plastic are centered on rolling elements. Raceways on the shaft and in the bush are made in the high tolerance class. Against impurity penetration there are effective contact or non-contact sealing on both sides. Bearings are filled with grease which secures effective lubrication usually during the whole bearing life. In some cases the bearings are adapted for re-lubrication. The bearing creates a complex arrangement unit enabling simple mounting and service. Bearings for instrument technics have also high dimension and operation accuracy and work as a rule at lower speed than bearings in textile machines.

Double Row Bearings for Water Pumps of Combustion Motors

Bearings for water pumps of combustion motors create an inseparable unit consisting of a shaft and a cylindrical bush arranged in two rows of balls or in one row of balls and one row of cylindrical rollers. Balls or cylindrical rollers are arranged in light one-side plastic cages. Raceways on the shaft and in the cylindrical bush are made in high tolerance class. Against impurity penetration there is an effective contact sealing on both sides. Bearings are filled with grease which secures effective lubrication during the whole bearing life. The bearing creates a complex arrangement unit enabling simple mounting and service.

Bottom Bracket Bearings for Bicycles

Bottom bracket bearings for bicycles create an inseparable unit consisting of a steel case -hardened or hardened shaft and a cylindrical bush made of bearing steel or of AL- alloy or also of polyamide filled with glass fibre. Raceways for two rows of balls are created by grinding directly on the shaft and in the cylindrical bush. Balls are arranged in one - side light cages made of plastic. Against impurity penetration there is a rubber contact sealing on both sides. Bearings are filled with grease which secures effective lubrication during the whole bearing life.

The advantage of these bearings is that they do not demand any maintenance and when mouting no clearance adjustment is necessary as for classical arrangements, because the optimum clearance is set directly by the bearing manufacturer.

For bearing clamping into the bicycle frame hub dishes made of galvanized steel or plastic are used. Ring dish creates one unit with the double row ball bearing, left dish is indepedent and supports the bearing only radially. By this design the bearing compact can be universally utilized for bicycles with various frame hub length in the range 66 to 71 mm.

Survey of Further Special Rolling Bearings

Single Row Ball Bearings

For industrial needs, especialy for automobile, aircraft industries and industries dealing with production of transportation equipment the bearings shown in the picture below have been developed and are being manufactured.

Clutch Bearings

Used in automobile industry for clutches of passanger cars and trucks.

Single Row Cylindrical Roller Bearings

Used in automobile and aircraft industries.

Multi-Row Cylindrical Roller Bearings

Used for accommodation of especially great radial forces with limited space, especially in metallurgy, for arrangement of rolling mill rollers. These bearings have rings with lubricating holes so that access of lubricant into all cylindrical roller rows can be secured.

Single Row and Double Row Tapered Roller Bearings

Used prevailingly in automobile industry and in the area of heavy mechanical engineering.

Double Row Tapered Roller Bearings

Used for arrangements of rolling mill rollers and other equipments in steel rolling mills.

Slewing Rings with Crossed Rollers

Slewing rings with crossed rollers in standard design are compact double - ring bearings with cross arrangement of cylindrical rollers in the raceway between inner and outer ring. Cylindrical rollers are in most cases split by separators made of plastic, or by a compact or segment cage. Contact angle of the raceways is usually 45°. Bearings are delivered with clearance or preload, it depends on their utilization. Bearing rings have holes for fixing screws. Inner space is protected by seals against excessive grease leakage from bearing and penetration of macro - impurities into the bearing.

They are produced with outer diameter from 300 to 2500 mm, with intenal or external gear, or without gear for arrangements of construction and earth machines, robots and manipulators, machine tools, cutter loaders, rotating shields, wind-power plants, and rotational furnaces.

Slewing Ring with Balls

Bearings are suitable for both durably rotating equipments and for machines with a cyclical character of work having medium size e.g. excavators and cranes. For higher rotational speed bearings with compact or segment cage are produced. They have relatively low friction moment. Arrangement rigidity with the use of ball bearings is lower than by crossed roller bearings. Their contact angle is usually 45°.

They are produced with outer diameter from 300 to 2650mm with internal or external gear, or without gear.

Double Direction Cylindrical Roller and Tapered Roller Thrust Bearings

Used for accommodation of great axial forces in rolling mill roller arragements and also where great rigidity in axial direction is required, mainly in arrangement of vertical lathe tables.

More precise information concerning special bearings can be obtained in firms' publications.

More information at www.zkl.cz

Rolling Bearings

Publ. No. ZKL 4/10/ENG

ZKL, a.s.

Jedovnická 8, Brno Czech Republic, Europe Phone: +420 544 135 120 E-mail: head@zkl.cz

ZKL Bearings CZ, a.s.

Holečkova 31, Praha Czech Republic, Europe Phone: +420 257 311 203 E-mail: zkl@zkl.cz