

Rod Ends and Spherical Plain Bearings

Rod ends and spherical plain bearings are designed to support a load, accommodate angular motion, misalignment and oscillation in mechanical motion systems. Rod ends consist of a threaded housing with an integral spherical plain bearing or a threaded housing formed around a ball. Spherical plain bearings consist of an outer race and hardened spherical ball. Spherical plain bearings provide a similar function as rod ends and require housing support.

Bearing Configurations

Male And Female Thread Types In Right And Left Hand Threads With The Option Of Grease Fittings.

Mounting Requirements

Light Press Or Mechanical Fit, Threaded Rod.

Bore Size Range

3/16" To 2"

Materials Housing & Balls

Carbon Steel, Alloy Steel, Stainless Steel

Races

Carbon Steel, Bronze, Delrin*, Stainless And PTFE Liners

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

SEALMASTER® Rod End Bearings

Rod End Selection Guide

Brand	lmage	Product Series	Housing / Race Material	Bore Size Range
		AR / ARE	HT Steel / Steel	3/16" - 3/4"
		ARE-20	HT Steel / Steel	3/16" - 3/4"
		TR / TRE	Steel / Steel	3/16" - 1"
Sealmaster Rod Ends		CFF-T / CFM-T	Steel / PTFE Liner	3/16" - 1"
		TF / TM	Steel / Bronze	3/16" - 3/4"
		CFF / CFM	Steel	3/16" - 1"
		CTFD / CTMD	Steel / Delrin*	3/16" - 3/4"

HT = Heat Treated SS = Stainless Steel

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin;E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

D	ESIGN CHA	RACTERISTIC	cs			FEATURES			
Static Load	Reversing Load	Shock Load	Relative Base Cost	Construction	Max Temp. (°F)	Grease Fitting	Left Hand Thread	Y-Stud	Page No.
		•	\$\$\$	3 Piece	350	Optional	Standard		J-13, J-15
		•	\$\$\$	3 Piece	350	Optional	Standard		J-14
<u></u>	•	•	\$	3 Piece	350	Optional	Standard	Optional	J-16 to J-17
<u></u>	<u></u>	•	\$\$	2 Piece	250		Standard	Optional	J-18 to J-19
<u></u>	•	•	\$	3 Piece	350	Optional	Standard	Optional	J-20 to J-21
<u> </u>	•	0	\$	2 Piece	350	Optional	Standard	Optional	J-22 to J-23
0	0	0	\$	3 Piece	150		Standard-	Optional	J-24 to J-25

○ = Not Recommended

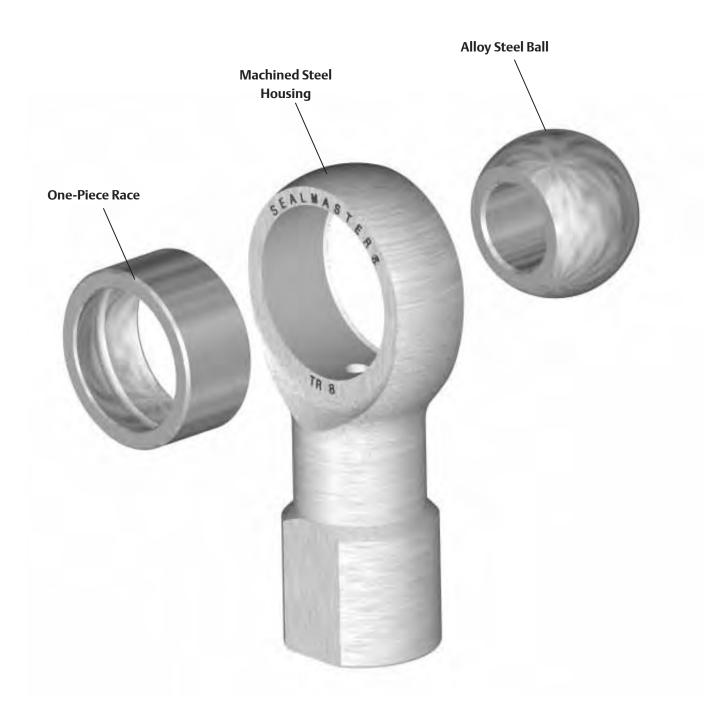
Poor ← → Best

Spherical Plain Bearings Selection Guide

Brand	Image	Product Series	Outer / Race Material	Bore Size Range
		SBG	Bronze / Steel Ball	3/16" - 1"
		SBG-S	HT Steel / Steel Ball	3/16" - 1"
	6	SBG-SA	HT Steel / Steel Ball	1/2" - 1"
Sealmaster Spherical Plain Bearings		SBG-SS	SS / SS Ball	3/16" - 1"
	0	COR	SS / SS Ball	3/16" - 1"
	6	СОМ	Steel / Steel Ball	3/16" - 1"
	0	FLBG	Steel Outer / Bronze Race / Steel Ball	3/16" - 1"
Sealmaster Heavy Duty Spherical	9	BTS-LS	Steel / Steel Ball	3/4" - 1 1/2"
Plain Bearings		BH-LS	Steel / Steel Ball	1"- 2"

HT = Heat Treated

SS = Stainless Steel

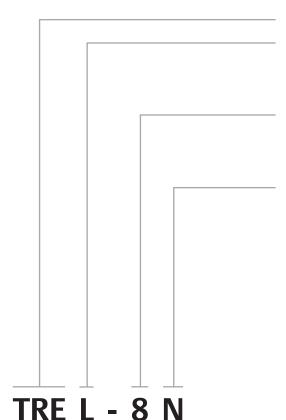

	Load Snock Load		6		FEAT	URES		
Static Load	Reversing Load	Shock Load	Relative Base Cost	Construction	Max Temp. (°F)	Groove on Ball ID and Inter- connecting Hole	Seal	Page No.
•	•	0	\$	2 Piece	350			J-32
•	•	•	\$	2 Piece	350			J-32
•	•	•	\$	2 Piece	350	Standard		J-32
•	•	•	\$\$	2 Piece	500			J-32
			\$\$	2 Piece	500			J-33
•	•	•	\$	2 Piece	350			J-34
•	•	•	\$\$	3 Piece	350			J-35
			\$\$\$	2 Piece	250		Standard	J-36
			\$\$\$	2 Piece	350			J-37

○ = Not Recommended Poor ◆ → Best

SEALMASTER® Rod End Bearings

Sealmaster Rod Ends Bearings

Sealmaster two and three piece rod end bearing housing designs have been optimized for overall strength. This housing advantage and variety of outer race materials including brass, steel, DELRIN*, and PTFE liners provide a wide selection of application solutions. Sealmaster rod end bearings can be joined together or connected with a threaded rod or tube as linkage assemblies for flexibility in motion transfer. In addition Sealmaster rod end bearings can accommodate angular misalignment to provide ease in assembly and smooth motion transfer in a variety of applications.



^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Rod End Bearing Nomenclature

Series*(see table below)

Thread Option

L - Left Hand Right hand (no designation)

Bore Size

Number of 1/16" of inches (ex. 5 = 5/16")

Optional Suffix

T - PTFE Liner (CFF-T / CFM-T series only)

Y - Y-Stud (not available on AR, ARE or ARE-20N)

20 - Large Shank (ARE series only)

R - Reverse Grease Fitting Location with Y-Stud

N - Grease Fitting

Description *Series

> Three Piece Rod End (Internal Threads) TR

Three Piece Rod End (Male External Threads) TRE

Alloy Rod End (Internal Threads) AR

Alloy Rod End (External Threads) ARE

CFF **C**ommercial **F**emale (Internal Threads)

Commercial Male (External Threads) CFM

Three Piece Female (Internal Threads) TF

TM Three Piece Male (External Threads)

Commercial Three Piece Female Delrin* (Internal Threads) **CTFD**

Commercial Three Piece Male DELRIN (External Threads) CTMD

The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

SEALMASTER_{® Rod End Bearings}

Features and Benefits

Three-Piece Rod Ends

Sealmaster three-piece rod ends incorporate a one-piece race formed around a hardened steel chrome plated ball in a controlled manufacturing process. Three-piece construction offers flexibility for alternative race materials designed to help solve specific application problems. Consult Application Engineering for material combinations available to meet your application needs.

Machined Steel Housing

- · Protective coated for corrosion resistance
- Higher average tensile strength and fatigue life vs. competition
- Wrench flat on female rod ends facilitates assembly
- Full catalog thread depth for maximum thread engagement

One-piece Race

- Reduces pound-out in applications with high frequency oscillation, vibration or shock loading
- Improved spherical ball-race conformity for even load distribution
- Precision ball-race fit
- Less wear than rod ends with two-piece race designs
- Manufactured in steel, aluminum bronze and self lubricating Delrin®

Ball

- Alloy steel heat treated and chrome plated for corrosion resistance
- Better wear resistance properties than carbon steel tin nickel plated balls

Two-Piece Rod Ends

Sealmaster two-piece design rod ends consist of a machined housing formed around a hardened steel chrome plated ball. This construction offers more load capacity than three-piece designs with like housing materials because of greater housing cross section.

Machined Steel Housing

- · Protective coated for corrosion resistance
- Wrench flat on female rod ends facilitates assembly

Ball

Alloy steel, heat treated, chrome plated for wear resistance properties

Multiple Configurations

Sealmaster AR, ARE and ARE-20N Precision Series **Extra Capacity Rod Ends**

- Three-piece design rod ends with heat treated alloy steel housing for high static, radial loads. The construction also helps reduce "pound-out" in applications with high frequency oscillation, vibration or shock loading.
- One-piece carbon steel outer race with protective coating for corrosion resistance
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes form 3/16" to 3/4"
- Grease fittings available on ¼" through ¾" bore sizes
- Male and female versions with right and left hand threads
- The ARE-20N Series offers an oversized shank for additional shank strength

CFM-T

Sealmaster CFF-T and CFM-T Precision Two Piece Rod Ends

- Two piece construction with self-lubricating PTFE liner for applications where grease lubrication is not practical or desirable
- Manufactured with consistent, no load, rotational torque values for accurate linkage control
- Machined carbon steel housings with protective coating for corrosion
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes form 3/16" to 3/4"
- Male and female versions with right and left hand threads

TR

TRE

Sealmaster TR and TRE Precision Series Rod Ends

- Three-piece construction to help reduce "pound-out" in applications with high frequency oscillation, vibration or shock loading
- One-piece carbon steel outer race with protective coating for corrosion
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes from 3/16" to 1"
- Grease fittings available on ¼" through 1" bore sizes
- Male and female versions in both right and left hand threads

Multiple Configurations continued

Sealmaster TF/TM, CFF/CFM, CFTD, CTMD **Commercial Series Rod Ends**

- Two and three-piece design
- Variety of material and construction combinations
- Machined carbon steel housings with protective coating for corrosion resistance
- Alloy steel, heat treated, chrome plated ball for wear resistance properties
- Wrench flat on female rod ends facilitates assembly
- Bore sizes from 3/16" to 3/4"
- Grease fitting available on CFF/CFM and TF/TM series in 1/4" through 3/4" bore sizes
- Male and female versions in both right and left hand threads

TF and TM

TF and TM series is designed with one-piece bronze race for lower coefficient of friction.

CFF and CFM

- CFF and CFM series with two piece construction has a greater housing cross section and increased load capacity than three piece rod ends with like housing materials.
- The commercial CFF, CFM series provides a lower cost alternative to the precision grade three piece rod ends with like housing material.

CTFD and CTMD

- CTFD and CTMD series with self-lubricating Delrin* race for light duty applications where oil and grease should be avoided.
- The rod end utilizes a DELRIN acetal resin race material with lower coefficient of friction than metal to metal versions.
- Delrin material withstands vibration without galling or fretting and absorbs little moisture compared to bearings with nylon races.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

Multiple Configurations continued

Sealmaster Rod Ends with Y-Studs

- Y-studs are available on Sealmaster TR/TRE, TR-N/TRE-N, CFF/CFM, CFF-N/ CFM-N and CTFD/CTMD rod ends bore sizes from 3/16" to 3/4".
- They are designed to facilitate right angle connections and accommodates up to \pm 25 degrees of angular misalignment in any direction.
- The Y-stud contains a hex wrench flat to facilitate assembly advantages and are manufactured from carbon steel and plated for corrosion protection.
- Caution when selecting rod ends with Y-studs: Catalog load ratings are not applicable with Y-studs because of the reduced stud strength due to bending. For load ratings with Y-stud contact Application Engineering.

SEALMASTER® Rod End Bearings

Design Modifications

Sealmaster rod ends can be ordered with the following design modifications at an extra cost.

Stock Modifications	Design Modifications	Option Offered on These Series	Ordering Instructions and Example for Specifying
	Zerk Type Fitting	AR, ARE, ARE-20, TR, TRE, TF, TM, CFF, CFM	Add "N" to part number suffix Example: TRE-8N (available on sizes 4-16 only) Caution: Catalog load ratings of rod ends are not applicable when grease fittings are specified, because of the reduced cross section of the head. When selecting rod ends with grease fittings, consult Application Engineering for static load capacities.
	Y-Studs	TR, TRE, TF, TM, CFF, CFM, CFF-T, CFM-T, CTFD, CTMD	Add "Y" to part number suffix Example: TRE-8Y (see page J-37 for stud specifications) Caution when selecting rod ends with Y-studs: Catalog load ratings are not applicable with Y-studs because of the reduced stud strength due to bending. For load ratings with Y-stud contact Application Engineering.
Special Modifications	Design Modifications	Option Offered on These Series	Ordering Instructions and Example for Specifying
	Alloy Steel Race	AR, ARE, ARE-20, TR, TRE	Add "S" to part number suffix Example ARE-8S
	Stainless Steel Race	AR, ARE, ARE-20, TR, TRE	Add "SS" to part number suffix Example TRE-6SS

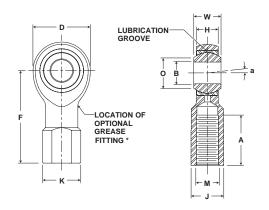
Rod End Bearings

Basic Construction Type: Female 3 pc. Extra Capacity,

Precision

Outer Member Material: Alloy Steel, Heat Treated

Protective Plating for Corrosion Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

AR, AR-N Series Rod Ends

					Dimer	sions incl	n / mm					Max Static	Misalignment	
Part No.	В	w	Н	D	F	А	M	K	J	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0015 0005	+.000 005	+.005 005	+.010 010	+.010 010	Min.	Class UNF-3B	Ref.	+.010 010	Ref.	Ref.	lb/N	Deg. +/-	
AR-3	.1900	.312	.250	.625	1.062	.531	#10-32	.375	.312	.437	.306	3700	6 1/2	.030
AK-3	4.826	7.92	6.35	15.88	26.97	13.49	#10-32	9.53	7.92	11.10	7.77	16458	0 1/2	.014
AR-4	.2500	.375	.281	.750	1.312	.719	1/4-28	.469	.375	.500	.331	5370	8	.060
AIX-4	6.350	9.53	7.14	19.05	33.32	18.26	1/4-20	11.91	9.53	12.70	8.41	23887	0	.027
AR-5	.3125	.437	.344	.875	1.375	.719	5/16-24	.531	.437	.625	.447	7500	7	.080
AK-5	7.938	11.10	8.74	22.23	34.93	18.26	5/10-24	13.49	11.10	15.88	11.35	33362	/	.036
AR-6	.3750	.500	.406	1.000	1.625	.906	3/8-24	.688	.562	.718	.517	9570	6	.140
AK-0	9.525	12.70	10.31	25.40	41.28	23.01	3/0-24	17.48	14.27	18.24	13.13	42569	0	.064
AR-7	.4375	.562	.437	1.125	1.812	1.031	7/16-20	.750	.625	.812	.586	11000	7	.180
AR-7	11.113	14.27	11.10	28.58	46.02	26.19	7/10-20	19.05	15.88	20.62	14.88	48930	,	.082
AR-8	.5000	.625	.500	1.312	2.125	1.156	1/2-20	.875	.750	.937	.698	13500	6	.290
AK-0	12.700	15.88	12.70	33.32	53.98	29.36	1/2-20	22.23	19.05	23.80	17.73	60051	0	.132
AR-10	.6250	.750	.562	1.500	2.500	1.469	5/8-18	1.000	.875	1.125	.839	17300	8	.430
AK-10	15.875	19.05	14.27	38.10	63.50	37.31	3/0-10	25.40	22.23	28.58	21.31	76954	0	.195
AR-12	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.125	1.000	1.312	.978	23200	7	.640
AN-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-10	28.58	25.40	33.32	24.84	103199	/	.290

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the AR-N series; Example: AR-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the AR series only. For AR-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: ARL-8.
- 5. For design modifications, see page J-13.

ASTER® Rod End Bearings

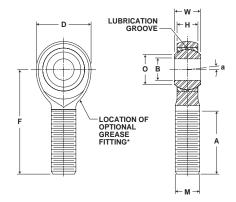
Basic Construction Type: Male 3 pc. Extra Capacity,

Precision

Outer Member Material: Alloy Steel, Heat Treated

Protective Plating for Corrosion Resistance

Race Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: Large Shank

ARE-20, ARE-20N Series Male Rod Ends

				Dime	nsions inch	/ mm				Max Static	Misalignment	
Part No.	В	W	Н	D	F	Α	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. Ib/kg
	+.0015 0005	+.000 005	+.005 005	+.010 010	+.010 010	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	iis/itg
ARE-3-20	.1900	.312	.250	.625	1.250	.719	1/4-28	.437	.306	3700	6 1/2	.030
ARE-3-20	4.826	7.92	6.35	15.88	31.75	18.26	1/4-20	11.10	7.77	16458	0 1/2	.014
ARE-4-20	.2500	.375	.281	.750	1.562	.969	5/16-24	.500	.331	5370	8	.060
ARE-4-20	6.350	9.53	7.14	19.05	39.67	24.61	5/10-24	12.70	8.41	23887	0	.027
ARE-5-20	.3125	.437	.344	.875	1.875	1.219	3/8-24	.625	.447	7500	7	.090
ARE-5-20	7.938	11.10	8.74	22.23	47.63	30.96	3/0-24	15.88	11.35	33362	,	.041
ARE-6-20	.3750	.500	.406	1.000	1.938	1.219	7/16-20	.718	.517	9570	6	.130
ARE-0-20	9.525	12.70	10.31	25.40	49.23	30.96	7/16-20	18.24	13.13	42569	6	.059
ARE-7-20	.4375	.562	.437	1.125	2.125	1.344	1/2-20	.812	.586	11000	7	.180
ARE-7-20	11.113	14.27	11.10	28.58	53.98	34.14	1/2-20	20.62	14.88	48930	/	.082
ARE-8-20	.5000	.625	.500	1.312	2.438	1.469	5/8-18	.937	.698	13500	6	.300
ARE-0-20	12.700	15.88	12.70	33.32	61.93	37.31	5/6-16	23.80	17.73	60051	6	.136
ARE-10-20	.6250	.750	.562	1.500	2.625	1.594	3/4-16	1.125	.839	17300	8	.460
AKE-10-20	15.875	19.05	14.27	38.10	66.68	40.49	3/4-10	28.58	21.31	76954	0	.209
ARE-12-20	.7500	.875	.687	1.750	2.875	1.719	7/8-14	1.312	.978	23200	7	.720
ARE-12-20	19.050	22.23	17.45	44.45	73.03	43.66	1/0-14	33.32	24.84	103199	/	.327

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the ARE-20N series; Example: ARE-8-20N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the ARE-20 series only. For ARE-20N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: AREL-8-20.
- 5. For design modifications, see page J-13.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

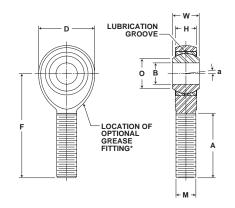
Rod End Bearings

Basic Construction Type: Male 3 pc. Extra Capacity,

Precision

Outer Member Material: Alloy Steel, Heat Treated

Protective Plating for Corrosion Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

ARE, ARE-N Series Male Rod Ends

				Dime	nsions inch	/ mm				Max Static	Misalignment	
Part No.	В		Н	D	F	Α	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0015 0005	+.000 005	+.005 005	+.010 010	+.010 010	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	io/kg
ARE-3	.1900	.312	.250	.625	1.250	.719	#10-32	.437	.306	2850	6 1/2	.030
ARL-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	12677	0 1/2	.014
ARE-4	.2500	.375	.281	.750	1.562	.969	1/4-28	.500	.331	4480	8	.050
ARL-4	6.350	9.53	7.14	19.05	39.67	24.61	1/4-20	12.70	8.41	19928	0	.023
ARE-5	.3125	.437	.344	.875	1.875	1.219	5/16-24	.625	.447	7280	7	.080
ARE-5	7.938	11.10	8.74	22.23	47.63	30.96	5/10-24	15.88	11.35	32383	/	.036
ARE-6	.3750	.500	.406	1.000	1.938	1.219	3/8-24	.718	.517	9580	6	.120
ARE-0	9.525	12.70	10.31	25.40	49.23	30.96	3/0-24	18.24	13.13	42614	0	.054
ARE-7	.4375	.562	.437	1.125	2.125	1.344	7/16-20	.812	.586	11000	7	.170
ARE-7	11.113	14.27	11.10	28.58	53.98	34.14	7/10-20	20.62	14.88	48930	,	.077
ARE-8	.5000	.625	.500	1.312	2.438	1.469	1/2-20	.937	.698	13500	6	.260
ARE-0	12.700	15.88	12.70	33.32	61.93	37.31	1/2-20	23.80	17.73	60051	0	.118
ARE-10	.6250	.750	.562	1.500	2.625	1.594	5/8-18	1.125	.839	17300	8	.410
ARE-10	15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	76954	0	.186
ARE-12	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.312	.978	23200	7	.640
ARE-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-10	33.32	24.84	103199	/	.290

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the ARE-N series; Example: ARE-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the ARE series only. For ARE-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: AREL-8.
- 5. For design modifications, see page J-13.

SEALMASTERRod End Bearings

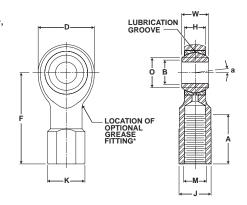
Basic Construction Type: Female 3 pc. General Purpose,

Precision

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion

Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TR, TR-N Series Female Rod Ends

					Dimen	sions inch	/ mm					Max Static	Misalignment	
Part No.	В	w	Н	D	F	А	M	К	J	Ball Diam.	0	Radial Load	Angle a	Unit Wt.
	+.0015 0005	+.000 005	+.005 005	+.010 010	+.015 015	Min.	Class UNF-2B	Ref.	+.010 010	Ref.	Ref.	lb/N	Deg. +/-	lb/kg
TR-3	.1900	.312	.250	.625	1.062	.531	#10-32	.375	.312	.437	.306	1850	6 1/2	.030
1K-3	4.826	7.92	6.35	15.88	26.97	13.49	#10-32	9.53	7.92	11.10	7.77	8229	0 1/2	.014
TR-4	.2500	.375	.281	.750	1.312	.719	1/4-28	.469	.375	.500	.331	2700	8	.060
1K-4	6.350	9.53	7.14	19.05	33.32	18.26	1/4-20	11.91	9.53	12.70	8.41	12010	0	.027
TR-5	.3125	.437	.344	.875	1.375	.719	5/16-24	.531	.437	.625	.447	3350	7	.080
rk-5	7.938	11.10	8.74	22.23	34.93	18.26	5/16-24	13.49	11.10	15.88	11.35	14902	/	.036
TR-6	.3750	.500	.406	1.000	1.625	.906	3/8-24	.688	.562	.718	.517	4450	6	.140
114-0	9.525	12.70	10.31	25.40	41.28	23.01	3/0-24	17.48	14.27	18.24	13.13	19795	0	.064
TR-7	.4375	.562	.437	1.125	1.812	1.031	7/16-20	.750	.625	.812	.586	5350	7	.180
IK-I	11.113	14.27	11.10	28.58	46.02	26.19	7/16-20	19.05	15.88	20.62	14.88	23798	,	.082
TD 0	.5000	.625	.500	1.312	2.125	1.156	1/2.20	.875	.750	.937	.698	7400	6	.290
TR-8	12.700	15.88	12.70	33.32	53.98	29.36	1/2-20	22.23	19.05	23.80	17.73	32917	6	.132
TR-10	.6250	.750	.562	1.500	2.500	1.469	5/8-18	1.000	.875	1.125	.839	8050		.430
1R-10	15.875	19.05	14.27	38.10	63.50	37.31	5/6-16	25.40	22.23	28.58	21.31	35808	8	.195
TD 40	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.125	1.000	1.312	.978	11300	_	.640
TR-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-16	28.58	25.40	33.32	24.84	50265	7	.290
** TR-16	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.688	1.500	1.875	1.269	21000	8 1/2	2.250
114-10	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	42.88	38.10	47.63	32.23	93413	0 1/2	1.021

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TR-N series; Example: TR-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the TR series only. For TR-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TRL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud. Example: TR-8Y.
- 6. For design modifications, see page J-13.
- **7. Tolerances for "D" dimensions is +.030, -.010. For "H" dimensions is +.030, -.010.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Rod End Bearings

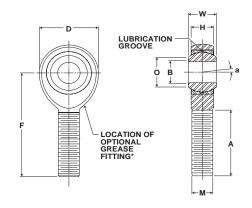
Basic Construction Type: Male 3 pc. General Purpose,

Precision

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion

Resistance


Race Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TRE, TRE-N Series Female Rod Ends

				Dime	nsions inch	/ mm				Max Static	Misalignment	
Part No.	В	W	Н	D	F	Α	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0015 0005	+.000 005	+.005 005	+.010 010	+.015 015	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	io/kg
TRE-3	.1900	.312	.250	.625	1.250	.719	#10-32	.437	.306	900	6 1/2	.030
IKE-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	4003	0 1/2	.014
TRE-4	.2500	.375	.281	.750	1.562	.969	1/4-28	.500	.331	1700	8	.050
TIXL=4	6.350	9.53	7.14	19.05	39.67	24.61	1/4-20	12.70	8.41	7562	0	.023
TRE-5	.3125	.437	.344	.875	1.875	1.219	5/16-24	.625	.447	2500	7	.080
IKE-5	7.938	11.10	8.74	22.23	47.63	30.96	5/16-24	15.88	11.35	11121	,	.036
TRE-6	.3750	.500	.406	1.000	1.938	1.219	3/8-24	.718	.517	4000	6	.120
IKE-0	9.525	12.70	10.31	25.40	49.23	30.96	3/0-24	18.24	13.13	17793	0	.054
TRE-7	.4375	.562	.437	1.125	2.125	1.344	7/16-20	.812	.586	5000	7	.170
IKE-7	11.113	14.27	11.10	28.58	53.98	34.14	7/16-20	20.62	14.88	22241	,	.077
TRE-8	.5000	.625	.500	1.312	2.438	1.469	1/2-20	.937	.698	7000	6	.260
IKE-0	12.700	15.88	12.70	33.32	61.93	37.31	1/2-20	23.80	17.73	31138	0	.118
TRE-10	.6250	.750	.562	1.500	2.625	1.594	5/8-18	1.125	.839	8050	8	.410
IKE-10	15.875	19.05	14.27	38.10	66.68	40.49	5/6-16	28.58	21.31	35808	0	.186
TRE-12	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.312	.978	11300	7	.640
IKE-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-10	33.32	24.84	50265	,	.290
** TRE-16	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.875	1.269	21000	8 1/2	2.250
1KE-10	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	47.63	32.23	93413	0 1/2	1.021

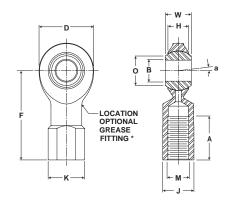
- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TRE-N series; Example: TRE-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the TRE series only. For TRE-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TREL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: TRE-8Y.
- 6. For design modifications, see page J-13.
- ** 7. Tolerances for "D" Dimension is +.030, -.010. For "H" Dimension is +.030, -.010.

ASTER® Rod End Bearings

Basic Construction Type: Female 2 pc. General Purpose,

Precision

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: PTFE Fabric Liner

CFF-T Series Female Rod Ends

					Dimen	sions inch	/ mm					Max Static	Misalignment	Unit
Part No.	В	w	Н	D	F	Α	M	К	J	Ball Diam.	0	Radial Load	Angle a	Wt.
	+.0015 0005	+.000 005	+.015 015	+.031 031	+.015 015	Min.	Class UNF-2B	Ref.	+.010 010	Ref.	Ref.	lb/N	Deg. +/-	lb/kg
CFF-3T	.1900	.312	.250	.625	1.062	.469	#10-32	.375	.312	.437	.306	865	6 1/2	.030
011-31	4.826	7.92	6.35	15.88	26.97	11.91	#10-32	9.53	7.92	11.10	7.77	3848	0 1/2	.014
CFF-4T	.2500	.375	.281	.750	1.312	.656	1/4-28	.469	.375	.500	.331	1550	8	.060
CFF-41	6.350	9.53	7.14	19.05	33.32	16.66	1/4-20	11.91	9.53	12.70	8.41	6895	0	.027
CFF-5T	.3125	.437	.344	.875	1.375	.656	5/16-24	.531	.437	.625	.447	2080	7	.080
CFF-51	7.938	11.10	8.74	22.23	34.93	16.66	5/10-24	13.49	11.10	15.88	11.35	9252	,	.036
CFF-6T	.3750	.500	.406	1.000	1.625	.781	3/8-24	.688	.562	.718	.517	2950	6	.140
CFF-61	9.525	12.70	10.31	25.40	41.28	19.84	3/0-24	17.48	14.27	18.24	13.13	13122	0	.064
CFF-7T	.4375	.562	.437	1.125	1.812	.906	7/16-20	.750	.625	.812	.586	3160	7	.180
CFF-/1	11.113	14.27	11.10	28.58	46.02	23.01	//10-20	19.05	15.88	20.62	14.88	14056	/	.082
CFF-8T	.5000	.625	.500	1.312	2.125	1.031	1/2-20	.875	.750	.937	.698	4920	6	.290
CFF-61	12.700	15.88	12.70	33.32	53.98	26.19	1/2-20	22.23	19.05	23.80	17.73	21885	0	.132
CFF-10T	.6250	.750	.562	1.500	2.500	1.344	E/0.40	1.000	.875	1.125	.839	5460	8	.430
CFF-101	15.875	19.05	14.27	38.10	63.50	34.14	5/8-18	25.40	22.23	28.58	21.31	24287	0	.195
OFF 40T	.7500	.875	.687	1.750	2.875	1.531	0/4.40	1.125	1.000	1.312	.978	8300	-	.640
CFF-12T	19.050	22.23	17.45	44.45	73.03	38.89	3/4-16	28.58	25.40	33.32	24.84	36920	7	.290
CFF-16T	1.0000	1.375	1.000	2.750	4.125	2.000	4 4 /4 4 2	1.688	1.500	1.875	1.269	21000	0.4/0	2.250
CFF-161	25.400	34.93	25.40	69.85	104.78	50.80	1 1/4-12	42.88	38.10	47.63	32.23	93413	8 1/2	1.021

- 1. To order left hand threaded units add letter "L" to part number prefix; Example: CFFL-8T.
- 2. "T" in part number prefix indicates PTFE liner.
- 3. Add letter "Y" to the part number suffix to indicate stud; Example: CFF-8TY.
- 4. For design modifications, see page J-13.

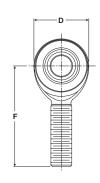
For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Rod End Bearings

Basic Construction Type: Male 2 pc. General Purpose,

Precision

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: PTFE Fabric Liner

CFM-T Series Male Rod Ends

				Dime	ensions inch	/ mm				Max Static	Misalignment	
Part No.		W	Н	D	F	Α	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0015 0005	+.000 005	+.015 015	+.031 031	+.015 015	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	ib/kg
CFM-3T	.1900	.312	.250	.625	1.250	.719	#10-32	.437	.306	865	6 1/2	.030
CFIVI-31	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	3848	0 1/2	.014
CFM-4T	.2500	.375	.281	.750	1.562	.969	1/4-28	.500	.331	1550	8	.050
CFIVI-41	6.350	9.53	7.14	19.05	39.67	24.61	1/4-28	12.70	8.41	6895	٥	.023
CFM-5T	.3125	.437	.344	.875	1.875	1.219	5/16-24	.625	.447	2080	7	.080
CFIVI-31	7.938	11.10	8.74	22.23	47.63	30.96	5/10-24	15.88	11.35	9252	,	.036
CFM-6T	.3750	.500	.406	1.000	1.938	1.219	3/8-24	.718	.517	2950	6	.120
CI W-01	9.525	12.70	10.31	25.40	49.23	30.96	3/0-24	18.24	13.13	13122	O	.054
CFM-7T	.4375	.562	.437	1.125	2.125	1.344	7/16-20	.812	.586	3160	7	.170
CI IVI-7 I	11.113	14.27	11.10	28.58	53.98	34.14	7/10-20	20.62	14.88	14056	,	.077
CFM-8T	.5000	.625	.500	1.312	2.438	1.469	1/2-20	.937	.698	4920	6	.260
CI WEST	12.700	15.88	12.70	33.32	61.93	37.31	1/2-20	23.80	17.73	21885	O	.118
CFM-10T	.6250	.750	.562	1.500	2.625	1.594	5/8-18	1.125	.839	5460	8	.410
CINFIOI	15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	24287	0	.186
CFM-12T	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.312	.978	8300	7	.640
OI IVI-121	19.050	22.23	17.45	44.45	73.03	43.66	3/4-10	33.32	24.84	36920	,	.290
CFM-16T	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.875	1.269	21000	8 1/2	2.250
CI IVI-101	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	47.63	32.23	93413	0 1/2	1.021

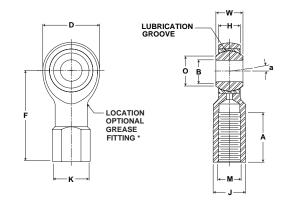
- 1. To order left hand threaded units add letter "L" to part number prefix. Example: CFML-8T.
- 2. "T" in part number prefix indicates PTFE liner.
- 3. Add letter "Y" to the part number suffix to indicate stud; Example: CFM-8TY.
- 4. For design modifications, see page J-13.

ASTER® Rod End Bearings

Basic Construction Type: Female 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Race Material: Bronze

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TF, TF-N Series Female Rod Ends

					Dimen	sions inch	/ mm					Max Static	Misalignment	
Part No.	В	w	Н	D	F	А	M	К	J	Ball Diam.	0	Radial Load	Angle a	Unit Wt.
	+.0025 0005	+.000 005	+.010 010	+.031 031	+.015 015	Min.	Class UNF-2B	Ref.	+.010 010	Ref.	Ref.	lb/N	Deg. +/-	lb/kg
TF-3	.1900	.312	.250	.625	1.062	.531	#10-32	.375	.312	.437	.306	1850	6.4/0	.030
117-3	4.826	7.92	6.35	15.88	26.97	13.49	#10-32	9.53	7.92	11.10	7.77	8229	6 1/2	.014
TF-4	.2500	.375	.281	.750	1.312	.719	1/4-28	.469	.375	.500	.331	2700	8	.060
117-4	6.350	9.53	7.14	19.05	33.32	18.26	1/4-20	11.91	9.53	12.70	8.41	12010	0	.027
TF-5	.3125	.437	.344	.875	1.375	.719	5/16-24	.531	.437	.625	.447	3350	7	.080
11-5	7.938	11.10	8.74	22.23	34.93	18.26	5/16-24	13.49	11.10	15.88	11.35	14902	/	.036
TF-6	.3750	.500	.406	1.000	1.625	.906	3/8-24	.688	.562	.718	.517	4450	6	.140
11-0	9.525	12.70	10.31	25.40	41.28	23.01	3/0-24	17.48	14.27	18.24	13.13	19795	6	.064
TF-7	.4375	.562	.437	1.125	1.812	1.031	7/16-20	.750	.625	.812	.586	5350	7	.180
117-7	11.113	14.27	11.10	28.58	46.02	26.19	1/10-20	19.05	15.88	20.62	14.88	23798		.082
TF-8	.5000	.625	.500	1.312	2.125	1.156	1/2-20	.875	.750	.937	.698	7400	6	.290
117-0	12.700	15.88	12.70	33.32	53.98	29.36	1/2-20	22.23	19.05	23.80	17.73	32917	0	.132
TF-10	.6250	.750	.562	1.500	2.500	1.469	5/8-18	1.000	.875	1.125	.839	8050	8	.430
117-10	15.875	19.05	14.27	38.10	63.50	37.31	5/6-16	25.40	22.23	28.58	21.31	35808	0	.195
TE 40	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.125	1.000	1.312	.978	11300	7	.640
TF-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-16	28.58	25.40	33.32	24.84	50265	/	.290

NOTES

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TF-N series; Example: TF-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the TF series only. For TF-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TFL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: TF-8Y.
- 6. For design modifications, see page J-13.

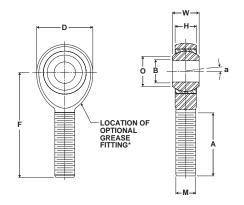
 $For more information on bearing \ capabilities \ outside \ of our standard \ of fering, please \ contact \ Application \ Engineering \ (800) \ 626-2093.$

Rod End Bearings

Basic Construction Type: Male 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Race Material: Bronze

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

TM, TM-N Series Male Rod Ends

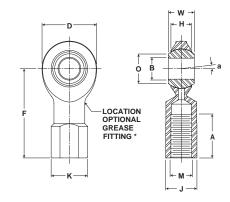
				Dime	ensions inch	/ mm				Max Static	Misalignment	
Part No.	В	W	Н	D	F	Α	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0025 0005	+.000 005	+.010 010	+.031 031	+.015 015	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	io/kg
TM-3	.1900	.312	.250	.625	1.250	.719	#10-32	.437	.306	900	6 1/2	.030
I IVI-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	4003	0 1/2	.014
TM-4	.2500	.375	.281	.750	1.562	.969	1/4-28	.500	.331	1700	8	.050
I IVI-4	6.350	9.53	7.14	19.05	39.67	24.61	1/4-20	12.70	8.41	7562	0	.023
TM-5	.3125	.437	.344	.875	1.875	1.219	5/16-24	.625	.447	2500	7	.080
TIVI-3	7.938	11.10	8.74	22.23	47.63	30.96	5/10-24	15.88	11.35	11121	,	.036
TM-6	.3750	.500	.406	1.000	1.938	1.219	3/8-24	.718	.517	4000	6	.120
I IVI-O	9.525	12.70	10.31	25.40	49.23	30.96	3/0-24	18.24	13.13	17793	0	.054
TM-7	.4375	.562	.437	1.125	2.125	1.344	7/16-20	.812	.586	5000	7	.170
I IVI-7	11.113	14.27	11.10	28.58	53.98	34.14	7/16-20	20.62	14.88	22241	/	.077
TM-8	.5000	.625	.500	1.312	2.438	1.469	1/2-20	.937	.698	7000	6	.260
I IVI-O	12.700	15.88	12.70	33.32	61.93	37.31	1/2-20	23.80	17.73	31138	0	.118
TM-10	.6250	.750	.562	1.500	2.625	1.594	5/8-18	1.125	.839	8050	8	.410
1101-10	15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	35808	°	.186
TM-12	.7500	.875	.687	1.750	2.875	1.719	2/4.16	1.312	.978	11300	7	.640
1 IVI- I ∠	19.050	22.23	17.45	44.45	73.03	43.66	3/4-16	33.32	24.84	50265	/	.290

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the TM-N series; Example: TM-8N.
- 2. Grease fittings are available on sizes 4 through 12 only.
- *3. Load ratings apply to the TM series only. For TM-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: TML-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: TM-8Y.
- 6. For design modifications, see page J-13.

ASTER® Rod End Bearings

Basic Construction Type: Female 2 pc. General Purpose,

Commercial


Outer Member Material: Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

CFF, CFF-N Series Female Rod Ends

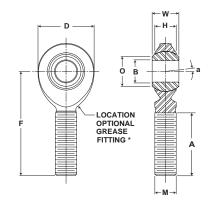
					Dimens	sions inch	/ mm					Max Static	Misalignment	
Part No.	В	W	Н	D	F	А	M	К	J	Ball Diam.	0	Radial Load	Angle a	Unit Wt. Ib/kg
	+.0025 0005	+.005 005	+.015 015	+.031 031	+.015 015	Min.	Class UNF-2B	Ref.	+.010 010	Ref.	Ref.	lb/N	Deg. +/-	iii/itg
CFF-3	.1900	.312	.250	.625	1.062	.469	#10-32	.375	.312	.437	.306	2000	6 1/2	.030
011-3	4.826	7.92	6.35	15.88	26.97	11.91	#10-32	9.53	7.92	11.10	7.77	8896	0 1/2	.014
CFF-4	.2500	.375	.281	.750	1.312	.656	1/4-28	.469	.375	.500	.331	3200	8	.060
CFF -4	6.350	9.53	7.14	19.05	33.32	16.66	1/4-20	11.91	9.53	12.70	8.41	14234	0	.027
CFF-5	.3125	.437	.344	.875	1.375	.656	5/16-24	.531	.437	.625	.447	3800	7	.080
CFF-5	7.938	11.10	8.74	22.23	34.93	16.66	5/16-24	13.49	11.10	15.88	11.35	16903	/	.036
CFF-6	.3750	.500	.406	1.000	1.625	.781	3/8-24	.688	.562	.718	.517	5000	6	.140
CFF-0	9.525	12.70	10.31	25.40	41.28	19.84	3/0-24	17.48	14.27	18.24	13.13	22241	6	.064
CFF-7	.4375	.562	.437	1.125	1.812	.906	7/16-20	.750	.625	.812	.586	6500	7	.180
CFF-1	11.113	14.27	11.10	28.58	46.02	23.01	7/10-20	19.05	15.88	20.62	14.88	28913	/	.082
CFF-8	.5000	.625	.500	1.312	2.125	1.031	1/2-20	.875	.750	.937	.698	9000	6	.290
CFF-0	12.700	15.88	12.70	33.32	53.98	26.19	1/2-20	22.23	19.05	23.80	17.73	40034	0	.132
CFF-10	.6250	.750	.562	1.500	2.500	1.344	5/8-18	1.000	.875	1.125	.839	10000	8	.430
CFF-10	15.875	19.05	14.27	38.10	63.50	34.14	3/0-10	25.40	22.23	28.58	21.31	44482	0	.195
CFF-12	.7500	.875	.687	1.750	2.875	1.531	2/4.46	1.125	1.000	1.312	.978	14000	7	.640
GFF-12	19.050	22.23	17.45	44.45	73.03	38.89	3/4-16	28.58	25.40	33.32	24.84	62275	/	.290
CFF-16	1.0000	1.375	1.000	2.750	4.125	2.000	4 4/4 40	1.688	1.500	1.875	1.269	25200	0.4/0	2.250
CFF-16	25.400	34.93	25.40	69.85	104.78	50.80	1 1/4-12	42.88	38.10	47.63	32.23	112095	8 1/2	1.021

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the CFF-N series; Example: CFF-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the CFF series only. For CFF-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: CFFL-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: CFF-8Y.
- 6. For design modifications, see page J-13.

Rod End Bearings

Basic Construction Type: Male 2 pc. General Purpose,

Commercial


Outer Member Material Carbon Steel with Protective

Plating for Corrosion

Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

CFM, CFM-N Series Male Rod Ends

				Dime	ensions inch	/ mm				Max Static	Misalignment	
Part No.	В	W	н	D	F	Α	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0025 0005	+.005 005	+.015 015	+.031 031	+.015 015	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	is/itg
CFM-3	.1900	.312	.250	.625	1.250	.719	#10-32	.437	.306	950	6 1/2	.030
CFIVI-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	4226	0 1/2	.014
CFM-4	.2500	.375	.281	.750	1.562	.969	1/4-28	.500	.331	2000	8	.050
CFIVI-4	6.350	9.53	7.14	19.05	39.67	24.61	1/4-20	12.70	8.41	8896	0	.023
CFM-5	.3125	.437	.344	.875	1.875	1.219	5/16-24	.625	.447	3000	7	.080
CFIVI-5	7.938	11.10	8.74	22.23	47.63	30.96	5/16-24	15.88	11.35	13345	/	.036
CFM-6	.3750	.500	.406	1.000	1.938	1.219	3/8-24	.718	.517	5000	6	.110
CFIVI-0	9.525	12.70	10.31	25.40	49.23	30.96	3/0-24	18.24	13.13	22241	6	.050
CFM-7	.4375	.562	.437	1.125	2.125	1.344	7/16-20	.812	.586	6500	7	.160
CFIVI-7	11.113	14.27	11.10	28.58	53.98	34.14	7/10-20	20.62	14.88	28913	/	.073
CFM-8	.5000	.625	.500	1.312	2.438	1.469	1/2-20	.937	.698	9000	6	.240
CI IVI-0	12.700	15.88	12.70	33.32	61.93	37.31	1/2-20	23.80	17.73	40034	0	.109
CFM-10	.6250	.750	.562	1.500	2.625	1.594	5/8-18	1.125	.839	10000	8	.400
CFIVI-10	15.875	19.05	14.27	38.10	66.68	40.49	3/0-10	28.58	21.31	44482	0	.181
CFM-12	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.312	.978	14000	7	.630
CFIVI-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-10	33.32	24.84	62275	_ ′	.286
CFM-16	1.0000	1.375	1.000	2.750	4.125	2.094	1 1/4-12	1.875	1.269	25200	8 1/2	2.250
CFIVI-10	25.400	34.93	25.40	69.85	104.78	53.19	1 1/4-12	47.63	32.23	112095	0 1/2	1.021

- 1. Rod ends with Zerk type grease fittings can be obtained by ordering the CFM-N series; Example: CFM-8N.
- 2. Grease fittings are available on sizes 4 through 16 only.
- *3. Load ratings apply to the CFM series only. For CFM-N load ratings contact Application Engineering.
- 4. To order left hand threaded units add letter "L" to part number prefix; Example: CFML-8.
- 5. Add letter "Y" to the part number suffix to indicate stud; Example: CFM-8Y.
- 6. For design modifications, see page J-13.

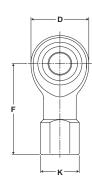
ASTER® Rod End Bearings

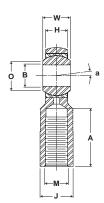
Basic Construction Type: Female 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion


Resistance


Race Material: Delrin*

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: Self-Lubricating

CTFD Series Female Rod Ends

					Dimens	sions inch /	mm					Max Static	Misalignment	
Part No.	В	w	Н	D	F	А	M	K	J	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0025 0005	+.005 005	+.010 010	+.031 031	+.015 015	Min.	Class UNF-2B	Ref.	+.010 010	Ref.	Ref.	lb/N	Deg. +/-	10/10
CTFD-3	.1900	.312	.250	.625	1.062	.531	#10-32	.375	.312	.437	.306	800	6 1/2	.030
CIFD-3	4.826	7.92	6.35	15.88	26.97	13.49	#10-32	9.53	7.92	11.10	7.77	3559	0 1/2	.014
CTFD-4	.2500	.375	.281	.750	1.312	.719	1/4-28	.469	.375	.500	.331	1060	8	.060
CIFD-4	6.350	9.53	7.14	19.05	33.32	18.26	1/4-20	11.91	9.53	12.70	8.41	4715	0	.027
CTFD-5	.3125	.437	.344	.875	1.375	.719	5/16-24	.531	.437	.625	.447	1570	7	.080
CIFD-3	7.938	11.10	8.74	22.23	34.93	18.26	5/10-24	13.49	11.10	15.88	11.35	6984	,	.036
CTFD-6	.3750	.500	.406	1.000	1.625	.906	3/8-24	.688	.562	.718	.517	2150	6	.140
CIFD-6	9.525	12.70	10.31	25.40	41.28	23.01	3/0-24	17.48	14.27	18.24	13.13	9564	0	.064
CTFD-7	.4375	.562	.437	1.125	1.812	1.031	7/16-20	.750	.625	.812	.586	2600	7	.180
CIFD-1	11.113	14.27	11.10	28.58	46.02	26.19	7/10-20	19.05	15.88	20.62	14.88	11565	,	.082
CTFD-8	.5000	.625	.500	1.312	2.125	1.156	1/2-20	.875	.750	.937	.698	3420	6	.290
CIFD-6	12.700	15.88	12.70	33.32	53.98	29.36	1/2-20	22.23	19.05	23.80	17.73	15213	0	.132
CTFD-10	.6250	.750	.562	1.500	2.500	1.469	5/8-18	1.000	.875	1.125	.839	4620	8	.430
CIFD-10	15.875	19.05	14.27	38.10	63.50	37.31	5/6-16	25.40	22.23	28.58	21.31	20551	0	.195
CTFD-12	.7500	.875	.687	1.750	2.875	1.719	3/4-16	1.125	1.000	1.312	.978	6600	7	.640
CTFD-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-16	28.58	25.40	33.32	24.84	29358	7	.290

NOTES

- 1. To order left hand threaded units add letter "L" to part number prefix; Example: CTFDL-8.
- 2. Add letter "Y" to the part number suffix to indicate stud; Example: CTFD-8Y.
- 3. For design modifications, see page J-13.
- 4. Caution: Prolonged exposure to ultraviolet light can cause loss of mechanical properties in DELRIN material.

Consult Application Engineering for application assistance.

Metric dimensions for reference only.

J-25

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin; E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.

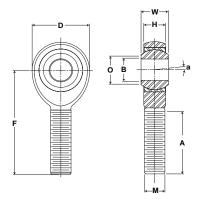
Rod End Bearings

Basic Construction Type: Male 3 pc. General Purpose,

Commercial

Outer Member Material: Carbon Steel with Protective

Plating for Corrosion


Resistance

Race Material: Delrin*

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

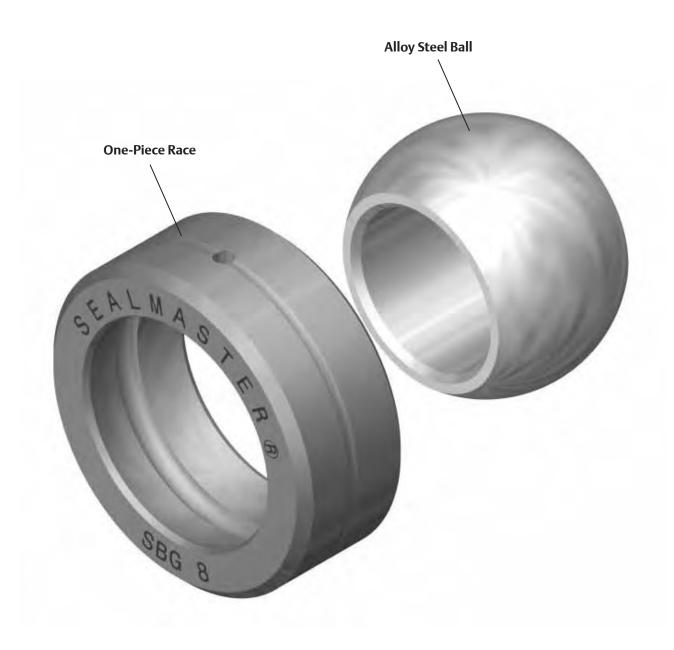
Feature: Self-Lubricating

CTMD Series Male Rod Ends

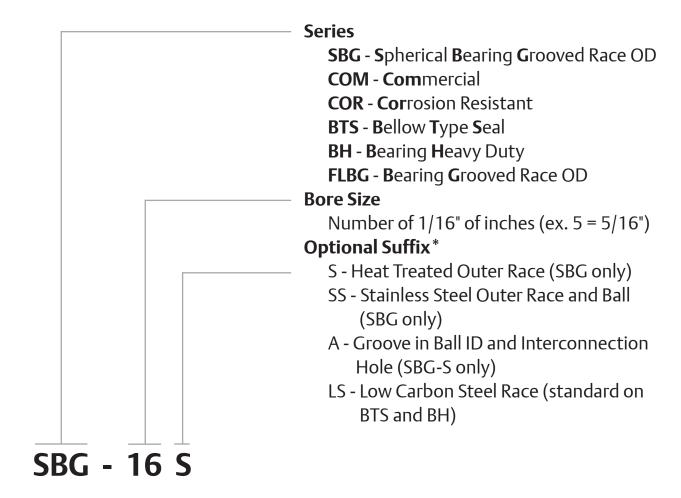
				Dime	nsions inch	/ mm				Max Static	Misalignment	
Part No.	В	W		D	F	А	M	Ball Diam.	0	Radial Load	Angle a	Unit Wt. lb/kg
	+.0025 0005	+.005 005	+.010 010	+.031 031	+.015 015	Min.	Class UNF-3A	Ref.	Ref.	lb/N	Deg. +/-	ib/Rg
CTMD-3	.1900	.312	.250	.625	1.250	.719	#10-32	.437	.306	800	6 1/2	.030
CTIVID-3	4.826	7.92	6.35	15.88	31.75	18.26	#10-32	11.10	7.77	3559	0 1/2	.014
CTMD-4	.2500	.375	.281	.750	1.562	.969	1/4-28	.500	.331	1060	8	.050
CTIVID-4	6.350	9.53	7.14	19.05	39.67	24.61	1/4-20	12.70	8.41	4715	0	.023
CTMD-5	.3125	.437	.344	.875	1.875	1.219	5/16-24	.625	.447	1570	7	.080
CTIVID-5	7.938	11.10	8.74	22.23	47.63	30.96	5/16-24	15.88	11.35	6984	,	.036
CTMD-6	.3750	.500	.406	1.000	1.938	1.219	3/8-24	.718	.517	2150	6	.120
CTIVID-6	9.525	12.70	10.31	25.40	49.23	30.96	3/0-24	18.24	13.13	9564	0	.054
CTMD-7	.4375	.562	.437	1.125	2.125	1.344	7/16-20	.812	.586	2600	7	.170
CTIVID-7	11.113	14.27	11.10	28.58	53.98	34.14	7/16-20	20.62	14.88	11565	,	.077
CTMD-8	.5000	.625	.500	1.312	2.438	1.469	1/2-20	.937	.698	3420	6	.260
CTIVID-0	12.700	15.88	12.70	33.32	61.93	37.31	1/2-20	23.80	17.73	15213	6	.118
CTMD-10	.6250	.750	.562	1.500	2.625	1.594	5/8-18	1.125	.839	4620	8	.410
CTIVID-10	15.875	19.05	14.27	38.10	66.68	40.49	5/6-16	28.58	21.31	20551	٥	.186
CTMD-12	.7500	.875	.687	1.750	2.875	1.719	2/4.46	1.312	.978	6600	7	.640
CTIVID-12	19.050	22.23	17.45	44.45	73.03	43.66	3/4-16	33.32	24.84	29358	/	.290

NOTES

- 1. To order left hand threaded units add letter "L" to part number prefix; Example: CTMDL-8.
- 2. Add letter "Y" to the part number suffix to indicate stud; Example: CTMD-8Y.
- 3. For design modifications, see page J-13.
- 4. Caution: Prolonged exposure to ultraviolet light can cause loss of mechanical properties in DELRIN® material.


Consult Application Engineering for application assistance.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin;E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.


Sealmaster Spherical Plain Bearings

Sealmaster spherical plain bearings perform a similar function as rod end bearings and must be supported in a housing. Sealmaster spherical plain bearings are designed with a variety of outer race materials including steel, heat treated steel, bronze, stainless steel and heat treated stainless steel for flexibility in a wide range of application requirements. In addition Sealmaster spherical plain bearings can accommodate angular misalignment to provide ease in assembly and smooth motion transfer in a variety of applications.

Spherical Plain Bearing Nomenclature

^{*} Options listed may not be available on all sizes and configurations, refer to product tables or consult Application Engineering for more information.

Features and Benefits

One-piece Race

- Helps reduce pound-out in applications with high frequency oscillation, vibration or shock loading
- Improved spherical ball-race conformity for even load distribution
- Precision ball-race fit
- Outer race lubrication grooves and interconnecting hole in outer race to direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings
- Steel, heat treated steel, stainless steel, and heat treated stainless steel materials

Ball

- Alloy steel heat treated and chrome plated for corrosion resistance
- Heat treated stainless steel balls for corrosion resistance

Multiple Configurations

Sealmaster SBG Precision Spherical Plain Bearings

SBG series contain a bronze outer race and alloy steel, heat treated, chrome plated ball for wear resistance properties. This material combination provides for low coefficient of friction.

Sealmaster SBG-S Precision Spherical Plain Bearings

SBG-S series utilize an alloy steel, heat treated outer race with protective coating for corrosion resistance and alloy steel, heat treated, chrome plated ball for wear resistance properties

Sealmaster SBG-SS Precision Spherical Plain Bearings

SBG-SS series is manufactured with a 300 series stainless steel outer race for corrosion resistance and a stainless steel, heat treated ball for corrosion resistance.

Sealmaster SBG-SA Precision Spherical Plain Bearings

SBG-SA series is the same as the SBG-S series and has a groove in ball ID and interconnecting hole to facilitate lubrication from the shaft into the bearing

Multiple Configurations continued

Sealmaster COR Precision Spherical Plain Bearings

COR series spherical plain bearings have a stainless steel, heat treated outer race for strength and corrosion resistance and stainless steel, heat treated ball for corrosion resistance

Sealmaster FLBG Precision Spherical Plain Bearings

FLBG series is available in with a carbon steel outer race with protective coating for corrosion resistance and bronze race. Also contains an alloy steel, heat treated, chrome plated ball for wear resistance properties

Sealmaster COM Commercial Series Spherical Plain Bearings

- Bore sizes from 3/16" to 1"
- Materials include a carbon steel outer race with protective coating for corrosion resistance with an alloy steel, heat treated, chrome plated ball for wear resistance properties
- Outer race lubrication grooves and interconnecting hole in outer race direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings

Sealmaster BH-LS Heavy Duty Spherical Plain Bearings

- Heavy duty bearings with radial static load capacities up to 221,000 lbs.
- Available in 1", 1-3/16", 1-1/4", 1-1/2", 1-3/4" and 2" bore sizes
- Materials include a carbon steel outer race with protective coating for corrosion resistance and alloy steel, heat treated, chrome plated ball for wear resistance properties
- Outer race lubrication grooves and interconnecting hole in outer race direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings.

Multiple Configurations continued

Sealmaster BTS-LS Sealed Spherical Plain Bearings

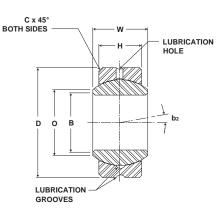
- This is a sealed design for applications where the bearing is exposed to dirt, dust, moisture and contaminants. They are available in four bore sizes (3/4", 1", 1-1/4" and 1-1/2")
- Materials include a carbon steel outer race with protective coating for corrosion resistance and alloy steel, heat treated, chrome plated ball for wear resistance properties
- Integral nitrile rubber "bellows type" seals misalign with the bearing and help reduce contaminant entry as well as seal in lubricant.
- Outer race lubrication grooves and interconnecting hole in outer race direct grease to the ball and race area. The outer races are chamfered to facilitate installation and retention into housings.

Design Modifications

Sealmaster spherical plain bearings can be ordered with the following design modifications at an extra cost.

Special Modifications	Design Modifications	Option Offered on These Series	Ordering Instructions and Example for Specifying
	Groove on Ball I.D. and Interconnecting Hole	SBG	Add "A" to part number suffix Example: SBG-8A

Spherical Plain Bearings



Basic Construction Type: 2 pc. General Purpose,

Precision

Race Material: Variable, See Below Variable, See Below **Ball Material:**

SBG, SBG-S, SBG-SA, SBG-SS Series Spherical Plain Bearings

						Dimen	sions in	ch / mm			Ma		Radial Lo	ad	Misalignment	Unit
Part No.	Part No.	Part No.	Part No.	В	D	W	Н	С	Ball Diam.	0		lb	/N		Angle b ₂	Wt.
				+.0000 0005	+.0000 0005	+.000 005	+.005 005	Ref.	Ref.	Ref.	SBG	SBG-S	SBG-SA	SBG-SS	Deg. +/-	ib/kg
SBG-3	SBG-3S	_	SBG-3SS	.1900	.5625	.281	.218	.025	.406	.293	2750	6480	_	4400	11 1/2	.020
0000	000 00		000 000	4.826	14.288	7.14	5.54	.64	10.31	7.44	12233	28824		19572	11 1/2	.009
SBG-4	SBG-4S	_	SBG-4SS	.2500	.6562	.343	.250	.025	.500	.364	4200	10000	_	6700	13 1/2	.020
000-4	000-40		3BO-433	6.350	16.667	8.71	6.35	.64	12.70	9.25	18683	44482		29803	10 1/2	.009
SBG-5	SBG-5S	_	SBG-5SS	.3125	.7500	.375	.281	.025	.562	.419	5800	13900	_	9200	12	.030
366-3	350-33	-	366-333	7.938	19.050	9.53	7.14	.64	14.27	10.64	25800	61830	_	40924	12	.014
SBG-6	SBG-6S		SBG-6SS	.3750	.8125	.406	.312	.030	.656	.515	7750	18700		12400	10	.040
3BG-0	350-03	-	366-033	9.525	20.638	10.31	7.92	.76	16.66	13.08	34474	83182	_	55158	10	.018
SBG-7	SBG-7S	_	SBG-7SS	.4375	.9062	.437	.343	.035	.687	.530	9300	22300	_	14900	9 1/2	.050
366-7	350-73	-	366-733	11.113	23.017	11.10	8.71	.89	17.45	13.46	41368	99195	_	66279	9 1/2	.023
SBG-8	SBG-8S	SBG-8SA	SBG-8SS	.5000	1.0000	.500	.390	.035	.781	.600	11200	26900	26900	17900	10	.070
366-0	300-03	3DG-63A	300-633	12.700	25.400	12.70	9.91	.89	19.84	15.24	49820	119657	119657	79623	10	.032
SBG-10	SBG-10S	SBG-10SA	SBG-10SS	.6250	1.1875	.625	.500	.035	.968	.739	20000	48000	48000	32000	9	.120
3BO-10	3DG-100	0DO-100A	ODO-1000	15.875	30.163	15.88	12.70	.89	24.59	18.77	88964	213515	213515	142343	9	.054
SBG-12	SBC 129	SBG-12SA	SBC 1288	.7500	1.4375	.750	.593	.045	1.187	.920	30000	78000	78000	48000	9	.210
3BG-12	350-123	3BG-123A	3DG-1233	19.050	36.513	19.05	15.06	1.14	30.15	23.37	133447	346961	346961	213515	9	.095
SBG-14	SBC 148	SBG-14SA	SBC 1489	.8750	1.5625	.875	.703	.045	1.312	.980	43000	103000	103000	69000	9 1/2	.270
366-14	300-143	35G-143A	366-1433	22.225	39.688	22.23	17.86	1.14	33.32	24.89	191274	458167	458167	306927	3 1/2	.122
SBG-16	SBC 169	SBG-16SA	SBC 1699	1.0000	1.7500	1.000	.797	.045	1.500	1.118	52000	125000	125000	83000	9 1/2	.380
300-10	300-103	3BG-103A	300-1033	25.400	44.450	25.40	20.24	1.14	38.10	28.40	231308	556028	556028	369202	9 1/2	.172

NOTES:

- 1. Add letter "A" to suffix to indicate cross drilled oil hole in ball and race and a grooved I.D. on ball.
- 2. For design modifications, see page J-31.
- 3. For mounting information, see Recommended Housing Bore Diameters page J-43.

Material Specifications

SBG

Outer Race - Aluminum bronze

Ball - Alloy steel, heat treated, chrome plated

SBG-S

Outer Race - Alloy steel, heat treated with protective plating

for corrosion resistance

Ball - Alloy steel, heat treated, chrome plated

SBG-SA

Outer Race - Alloy steel, heat treated with protective plating

for corrosion resistance

Ball - Alloy steel, heat treated, chrome plated

SBG-SS

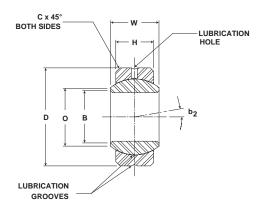
Outer Race - 300 series stainless steel Ball - Stainless steel, heat treated

Metric dimensions for reference only.

Not all parts are available from stock. Please contact customer service for availability (800) 626-2120.

For more information on bearing capabilities outside of our standard offering, please contact Application Engineering (800) 626-2093.

Product Options Technical Engineering Bearing Selection Nomenclature Aid Features & Benefits J-5 J-28 J-29 J-31 J-38



Basic Construction Type: 2 pc. Corrosion Resistant,

Precision

Race Material: Stainless Steel, Heat Treated

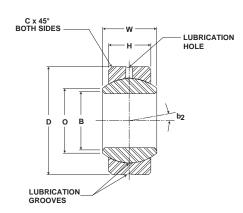
Ball Material: Stainless Steel, Heat Treated

COR Series Spherical Plain Bearings

			Dim	nensions inch /	mm			Max Static	Misalignment	
Part No.	В	D	W	Н	С	Ball Diam.	0	Radial Load	Angle b ₂	Unit Wt. Ib/kg
	+.0000 0005	+.0000 0005	+.000 005	+.005 005	Ref.	Ref.	Ref.	lb/N	Deg. +/-	ib/Kg
COR-3	.1900	.5625	.281	.218	.025	.406	.293	4800	11 1/2	.020
COR-3	4.826	14.288	7.14	5.54	.64	10.31	7.44	21351	11 1/2	.009
COR-4	.2500	.6562	.343	.250	.025	.500	.364	7500	13 1/2	.020
COR-4	6.350	16.667	8.71	6.35	.64	12.70	9.25	33362	13 1/2	.009
COR-5	.3125	.7500	.375	.281	.025	.562	.419	10400	12	.030
COR-5	7.938	19.050	9.53	7.14	.64	14.27	10.64	46262	12	.014
COD 6	.3750	.8125	.406	.312	.030	.656	.515	14000	40	.040
COR-6	9.525	20.638	10.31	7.92	.76	16.66	13.08	62275	10	.018
COR-8	.5000	1.0000	.500	.390	.035	.781	.600	20000	10	.070
COR-6	12.700	25.400	12.70	9.91	.89	19.84	15.24	88964	10	.032
COR-10	.6250	1.1875	.625	.500	.035	.968	.739	36000	0	.120
COR-10	15.875	30.163	15.88	12.70	.89	24.59	18.77	160136	9	.054
COR-12	.7500	1.4375	.750	.593	.045	1.187	.920	54000	9	.210
COR-12	19.050	36.513	19.05	15.06	1.14	30.15	23.37	240204	9	.095
COR-14	.8750	1.5625	.875	.703	.045	1.312	.980	77000	9 1/2	.270
COR-14	22.225	39.688	22.23	17.86	1.14	33.32	24.89	342513	9 1/2	.122
COR-16	1.0000	1.7500	1.000	.797	.045	1.500	1.118	93500	0.4/0	.380
COK-16	25.400	44.450	25.40	20.24	1.14	38.10	28.40	415909	9 1/2	.172

Spherical Plain Bearings **SEAL**

Basic Construction Type: 2 pc. General Purpose,


Commercial

Race Material: Carbon Steel with Protective

Plating for Corrosion Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

COM Series Spherical Plain Bearings

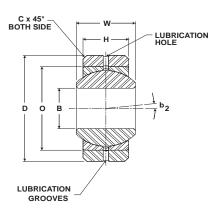
			Dim	nensions inch /	mm			Max Static	Misalignment	
Part No.	В	D	W	Н	С	Ball Diam.	0	Radial Load	Angle b ₂	Unit Wt. Ib/kg
	+.0015 0005	+.0000 0007	+.000 005	+.005 005	Ref.	Ref.	Ref.	lb/N	Deg. +/-	15/10
COM-3	.1900	.5625	.281	.218	.025	.406	.293	3250	11 1/2	.020
COIVI-3	4.826	14.288	7.14	5.54	.64	10.31	7.44	14457	11 1/2	.009
COM-4	.2500	.6562	.343	.250	.025	.500	.364	4900	13 1/2	.020
COIVI-4	6.350	16.667	8.71	6.35	.64	12.70	9.25	21796	13 1/2	.009
COM-5	.3125	.7500	.375	.281	.025	.562	.419	6450	12	.030
COIVI-5	7.938	19.050	9.53	7.14	.64	14.27	10.64	28691	12	.014
COM-6	.3750	.8125	.406	.312	.030	.656	.515	8250	40	.040
COIVI-6	9.525	20.638	10.31	7.92	.76	16.66	13.08	36698	10	.018
COM-7	.4375	.9062	.437	.343	.035	.687	.530	10200	9 1/2	.050
COIVI-7	11.113	23.017	11.10	8.71	.89	17.45	13.46	45372	9 1/2	.023
COM-8	.5000	1.0000	.500	.390	.035	.781	.600	13600	40	.070
COIVI-8	12.700	25.400	12.70	9.91	.89	19.84	15.24	60496	10	.032
COM-10	.6250	1.1875	.625	.500	.035	.968	.739	21000		.120
COIVI-10	15.875	30.163	15.88	12.70	.89	24.59	18.77	93413	9	.054
COM-12	.7500	1.4375	.750	.593	.045	1.187	.920	30000		.210
COIVI-12	19.050	36.513	19.05	15.06	1.14	30.15	23.37	133447	9	.095
COM 44	.8750	1.5625	.875	.703	.045	1.312	.980	41100	0.4/0	.270
COM-14	22.225	39.688	22.23	17.86	1.14	33.32	24.89	182822	9 1/2	.122
COM 10	1.0000	1.7500	1.000	.797	.045	1.500	1.118	54700	0.4/0	.380
COM-16	25.400	44.450	25.40	20.24	1.14	38.10	28.40	243318	9 1/2	.172

NOTES

Basic Construction Type: 3 pc. General Purpose,

Precision

Outer Member Material: Carbon Steel with Protective


Plating for Corrosion

Resistance

Race Material: Bronze

Ball Material: Alloy Steel, Heat Treated,

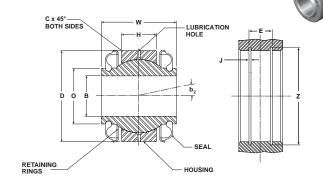
Chrome Plated

FLBG Series Spherical Plain Bearings

			Dim	ensions inch /	mm			Max Static Radial	Misalignment Angle b ₂	
Part No.	В	D	W	Н	С	Ball Diam.	0	Radial Load	Angle b ₂	Unit Wt. lb/kg
	+.0000 0005	+.0000 0005	+.000 005	+.005 005	Ref.	Ref.	Ref.	lb/N	Deg. +/-	io/itg
FLBG-3	.1900	.6250	.281	.187	.020	.406	.293	2960	16 1/2	.020
FLBG-3	4.826	15.875	7.14	4.75	.51	10.31	7.44	13167	10 1/2	.009
FLBG-4	.2500	.7500	.375	.281	.020	.500	.331	5240	14.4/0	.040
FLDG-4	6.350	19.050	9.53	7.14	.51	12.70	8.41	23309	14 1/2	.018
FLBG-5	.3125	.8750	.437	.313	.025	.625	.447	6550	14 1/2	.050
FLDG-5	7.938	22.225	11.10	7.95	.64	15.88	11.35	29136	14 1/2	.023
FLBG-6	.3750	1.0000	.500	.375	.025	.718	.517	8600	12 1/2	.080
FLBG-0	9.525	25.400	12.70	9.53	.64	18.24	13.13	38255	12 1/2	.036
FLBG-7	.4375	1.1875	.562	.437	.040	.812	.586	11100	44	.120
FLBG-7	11.113	30.163	14.27	11.10	1.02	20.62	14.88	49375	11	.054
FLBG-8	.5000	1.3125	.687	.531	.045	.937	.637	15600	40.4/0	.180
FLDG-0	12.700	33.338	17.45	13.49	1.14	23.80	16.18	69392	12 1/2	.082
FLBG-10	.6250	1.5625	.875	.687	.045	1.187	.802	25700	40	.330
FLDG-10	15.875	39.688	22.23	17.45	1.14	30.15	20.37	114319	12	.150
FLBG-12	.7500	2.2500	1.250	.937	.050	1.625	1.038	47600	45	.970
FLDG-12	19.050	57.150	31.75	23.80	1.27	41.28	26.37	211735	15	.440
FLBG-16	1.0000	2.3750	1.125	.875	.065	1.750	1.345	48200	10	.940
FLDG-10	25.400	60.325	28.58	22.23	1.65	44.45	34.16	214404	10	.426

Spherical Plain Bearings **SEA**

Basic Construction Type: 2 pc. Heavy Duty, Precision


Race Material: Carbon Steel with Protective

Plating for Corrosion Resistance

Ball Material: Alloy Steel, Heat Treated,

Chrome Plated

Feature: Nitrile Rubber Seals

BTS-LS Series Spherical Plain Bearings

J-36

					Di	mensio	ns inch	/ mm				Max Static	Misalignment		
Part No.	В	D	W	Н	С	Ball Diam.	0	Housing	Е	Z	J	Radial Load	Angle b ₂	Unit Wt. Ib/kg	Recommended Snap Ring
	+.0000 0007	+.0000	+.000	+.005	Ref.	Ref.	Ref.	Width	Groove Spacing	Groove Diam.	Groove Width	lb/N	Deg. +/-	15/13	
BTS-12LS	.7500	1.5000	1.250	.500	.015	1.250	1.000	1.250	.507	1.576/1.584 40.03/40.23		31500	13 1/2	.250	TRUARC #5000-150
B13-12L3	19.050	38.100	31.75	12.70	.38	31.75	25.40	31.75	12.88	1.551/1.556 39.4/39.52		140119	15 1/2	.113	SPIROLOX #RR-150
BTS-16LS	1.0000	2.2500	1.875	.875	.015	1.813	1.375	1.687	.882	2.364/2.376 60.05/60.35		83500	12	.950	TRUARC #5000-225
B13-10L3	25.400	57.150	47.63	22.23	.38	46.05	34.93	42.85	22.40	2.324/2.330 59.03/59.18		371427	12	.431	SPIROLOX #RR-225
BTS-20LS	1.2500	2.3750	1.875	.875	.015	2.000	1.625	1.687	.882	2.499/2.511 63.47/63.78		94000	9 1/2	.990	TRUARC #5000-237
B13-20L3	31.750	60.325	47.63	22.23	.38	50.80	41.28	42.85	22.40	2.453/2.459 62.31/62.46		418133	9 1/2	.449	SPIROLOX #RR-237
BTS-24LS	1.5000 2.7500	2.7500	1.875	1.000	.015	2.375	2.000	1.875	1.007	2.894/2.906 73.51/73.81		130000	7 1/2	1.440	TRUARC #5000-275
D13-24L3	38.100	69.850	47.63	25.40	.38	60.33	50.80	47.63	25.58	2.841/2.847 72.16/72.31		578269	7 1/2	.653	SPIROLOX #RR-275

- 1. Retaining rings are NOT furnished with the bearings.
- 2. For mounting information, see Recommended Housing Bore Diameters, page J-43.

Basic Construction Type:

2 pc. Heavy Duty, Precision

Race Material:

Carbon Steel with Protective Plating for Corrosion

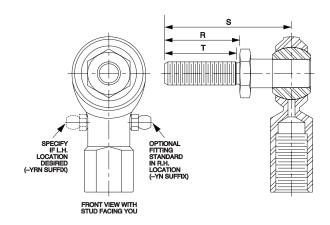
Resistance

Ball Material:

Alloy Steel, Heat Treated,

Chrome Plated

BH-LS Series Spherical Plain Bearings


		Dimensions inch / mm						Max Static	Misalignment	
Part No.	В	D	W	Н	С	Ball Diam.	0	Radial Load	Angle b ₂	Unit Wt. lb/kg
	+.0000 0007	+.0000 0007	+.000 005	+.007 007	Ref.	Ref.	Ref.	lb/N	Deg. +/-	
BH-16LS	1.0000 25.400	2.0000 50.800	1.000 25.40	.781 19.84	.035 .89	1.687 42.85	1.360 34.54	69500 309151	9	.550 .249
BH-19LS	1.1875 30.163	2.3750 60.325	1.187 30.15	.937 23.80	.035 .89	2.000 50.80	1.610 40.89	100000 444822	8 1/2	.940 .426
BH-20LS	1.2500 31.750	2.3750 60.325	1.187 30.15	.937 23.80	.035 .89	2.000 50.80	1.610 40.89	100000 444822	8 1/2	.900 .408
BH-24LS	1.5000 38.100	2.7500 69.850	1.375 34.93	1.094 27.79	.035 .89	2.312 58.72	1.860 47.24	135000 600510	8	1.360 .617
BH-28LS	1.7500 44.450	3.1250 79.375	1.562 39.67	1.250 31.75	.040 1.02	2.625 66.68	2.110 53.59	178000 791783	8	1.950 .885
BH-32LS	2.0000 50.800	3.5000 88.900	1.750 44.45	1.375 34.93	.040 1.02	2.937 74.60	2.360 59.94	221000 983057	8 1/2	2.640 1.197

Rod Ends and Spherical Plain Bearing Engineering Section

Sealmaster Rods Ends with Y-Studs

	Dimensions in inch					
Stud Size	R +.031 031	\$ +.031 031	T Min.	Thread Size Class UNF-2A		
-3	.500	.968	7/16	#10-32		
-4	.562	1.047	1/2	1/4-28		
-5	.687	1.234	19/32	5/16-24		
-6	.906	1.540	13/16	3/8-24		
-7	1.125	1.930	1	7/16-20		
-8	1.125	2.000	1	1/2-20		
-10	1.500	2.500	1 3/8	5/8-18		
-12	1.812	3.000	1 5/8	3/4-16		

Rod Ends with Y-Studs are available in the following series:

CTFD-Y, CTFDL-Y	TF-Y, TFL-Y
CTMD-Y, CTMDL-Y	TF-YN, TFL-YN
CFF-Y, CFFL-Y	TM-Y, TML-Y
CFF-YN, CFFL-YN	TM-YN, TML-YN
CFM-Y, CFML-Y	TR-Y, TRL-Y
CFM-YN, CFML-YN	TR-YN, TRL-YN
CFF-TY, CFFL-TY	TRE-Y, TREL-Y
CFM-TY. CFML-TY	TRE-YN. TREL-YN

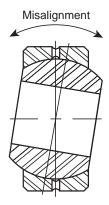
- Sealmaster Y-studs are available with the above rod end series to facilitate right angle connections in a variety of linkage applications.
- To order, add the letter Y to the rod end part number; Example: TR-8Y.
- Sealmaster Y-studs are manufactured from carbon steel and plated for corrosion resistance.
- They are secured in the rod end bore, threaded and manufactured with a hex wrench flat.
- Rod ends with Y-studs can accommodate up to ± 25 degrees of angular misalignment in any direction for linkage design flexibility.
- Y-stud thread sizes are the same as the corresponding rod end and are available in right hand threads only.

Caution: When selecting rod ends with Y-studs: Catalog load ratings are not applicable with Y-studs because of the reduced stud strength due to bending. For load ratings with Y-studs contact Application Engineering.

SEALMASTER® Rod End and Spherical Plain Bearings

Rod Ends and Spherical Plain Bearing Engineering Section

Sealmaster rod ends can be joined together or connected with a threaded rod or tube to form linkage assemblies allowing design engineers flexibility in transferring motion between points with long center distances. Normal operation of rod ends results in wear of the raceways or fatique or fracture of the outer member. Give consideration to this in the design of the equipment. Spherical plain bearings provide a similar function as rod ends and must be supported in a housing. Spherical plain bearings afford customers greater load rating per equivalent rod end bore size. This occurs because rod end load capacity is controlled by the head and shank geometry. Spherical plain bearings have a larger bearing area and generally are less restricted by the housing material or dimensions in which they are mounted.

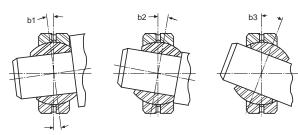

Load Ratings Rod Ends

Static radial load ratings are applied perpendicular to the bearing ball bore and are a function of strength of race and housing materials. Sealmaster static load ratings listed in this catalog are maximum working loads and factors of safety should be applied as necessary. External conditions including mounting components, bolts, pins and housings should be considered separately when designing this product into an application. Static axial load ratings are applied parallel or through the bearing ball bore. In general, rod ends are not intended to carry axial loads. Applications of rod ends with axial loading should be reviewed with Application Engineering.

Spherical Bearings

Static radial load ratings listed in the catalog are based on a maximum permanent set in the bearing race of .2% of normal ball diameter.

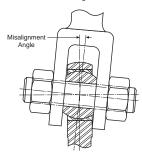
Static axial load ratings are approximately 20% of the radial static load ratings listed with each unit. Caution should be exercised in designing adequate housings to support spherical bearings.


Angular Misalignment

Sealmaster rod ends and spherical plain bearings are primarily selected for their ability to withstand misalignment. As an example, a rod end and a shaft may not always be positioned at right angles and misalignment capability is important. Misalignment can occur through wear, tolerance build-up, structural deflection, or in design. The angle of misalignment in a rod end is controlled by the outside diameter of the head and ball width. The maximum degree of misalignment is obtained when the head contacts the inside of the fork or clevis in which it is mounted. Greater than catalog misalignment can be accomplished by adding a spacer washer between the ball flat and the clevis I.D. or by selecting a rod end with a Y-Stud. The angle of misalignment in a spherical bearing is calculated somewhat differently than a rod end. Illustrated on the following page are common mountings for spherical bearings and the corresponding formula for calculating the angle of misalignment.

Rod Ends and Spherical Plain Bearing Engineering Section

Spherical Plain Bearing Misalignment Capabilities


SERIES SBG, SBG-S, SBG-SS, SBG-SA, COM, COR (degrees)				
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3	
-3	7 1/2	11 1/2	29 1/2	
-4	9	13 1/2	30	
-5	8	12	26	
-6	7 1/2	10	26 1/2	
-7	6 1/2	9 1/2	20 1/2	
-8	7	10	20	
-10	6 1/2	9	18 1/2	
-12	7	9	21	
-14	7	9 1/2	16	
-16	7	9 1/2	16	

SERIES BH-LS (degrees)					
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3		
-16	6 1/2	9	26		
-19	6 1/2	8 1/2	25 1/2		
-20	6 1/2	8 1/2	23 1/2		
-24	6	8	21 1/2		
-28	6	8	20		
-32	6 1/2	8 1/2	19		

SERIES FLBG (degrees)					
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3		
-3	9 1/2	16 1/2	34 1/2		
-4	8	14 1/2	26		
-5	9	14 1/2	30		
-6	8	12 1/2	27		
-7	6 1/2	11	25		
-8	7 1/2	12 1/2	23		
-10	7 1/2	12	23		
-12	8 1/2	15	27 1/2		
-16	6 1/2	10	25		

SERIES BTS-LS (degrees)					
PART NO.	(+/-) b1	(+/-) b2	(+/-) b3		
-12	-	13 1/2	-		
-16	-	12	-		
-20	-	9 1/2	-		
-24	-	7 1/2	-		

Rod End Misalignment Capabilities

SERIES AR, ARE, ARE-20, TR, TRE, CFF-T, CFM-T, TF, TM, CFF, CFM, CTFD, CTMD (degrees)				
PART NO.	(+/-) a			
-3	6 1/2			
-4	8			
-5	7			
-6	6			
-7	7			
-8	6			
-10	8			
-12 7				
-16	8 1/2			

Reference Letters

B = Bore of Ball

C = Chamfer on Outer Race

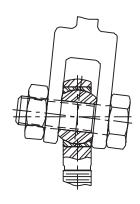
D = Head or Diameter of Outer Race

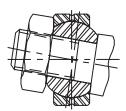
E = Ball Diameter

H = Housing Width

 $V = \sqrt{(D-2C)^2 + H^2}$

W = Ball Width


Rod Ends and Spherical Plain Bearing Engineering Section


Common Retention Methods

Clevis mounting is a common practice in securing rod ends in an application. Generally they are assembled into the clevis (or yoke) with a bolt or machined pin.

Clevis Installation

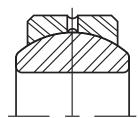
Shoulder on Shaft with Lock Nut

Rod End Grease Fitting Table					
Bore Size	Fitting Number	Thread Size	Hex size		
1/4" - 7/16"	#3018 (no ball check)	#6-40 UNF-2A	1/4"		
1/2" - 1"	#3016 (no ball check)	#10-32 UNF-2A	1/4"		

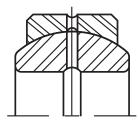
Lubrication

Sealmaster metal three-piece rod ends are greased from the factory and can be furnished with grease fittings on sizes #4 through #16 to facilitate relubrication in the field. Sealmaster CFF/CFM two-piece rod ends are oil coated and are also available with grease fittings. Sealmaster spherical bearings are oil coated except the stainless steel series which are dry. The BH-LS and BTS-LS series are greased from the factory.

Periodic relubrication helps prevent excessive wear, protects balls and races from corrosion, purges contamination and wear debris and helps to seal against contamination. Relubrication is recommended whenever possible for most applications. The length of interval between greasing is dependent on the application parameters and external conditions. Self-Lubricating PTFE and Delrin* rod ends are generally used where grease relubrication is not practical or desirable. Zerk type threaded grease fittings (designated as "N" suffix) are available on all rod end series except for PTFE and DELRIN. Replacement grease fittings can be ordered by identifying the appropriate rod end series and size.


Caution: Catalog load ratings of rod ends are not applicable when grease fittings are specified, because of the reduced cross section of the head. When selecting rod ends with grease fittings, consult Application Engineering for static load capacities.

^{*} The following trade names, trademarks and/or registered trademarks are used in this material by Emerson Power Transmission Corporation are NOT owned or controlled by Emerson Power Transmission Corporation and are believed to be owned by the following parties: Delrin;E.I. du Pont de Nemurs and Company. Emerson Power Transmission Corporation cannot and does not represent or warrant the accuracy of this information.



Rod Ends and Spherical Plain Bearing Engineering Section

Sealmaster spherical plain bearings are manufactured with two lubrication systems which provide a path for lubrication to the ball and race area.

Outer races are manufactured with lubrication grooves and an interconnecting hole in the outer race to direct grease to the ball and race area. Standard on the following series: COM, SBG, SBG-S, SBG-SS, COR, FLBG, HH-LS, BTS-LS

A groove on the ball I.D. and interconnecting hole on "A" series only, directs lubrication from the shaft to the ball and race area. Standard on the SBG-SA

Application

Sealmaster rod ends and spherical plain bearings are designed to provide an efficient smooth transfer of motion in a wide variety of applications and equipment. This motion is usually associated with various types of linkage controls. Commonly referred to as plain or sliding bearings, they are designed primarily to assist and provide motion transfer, support a load, allow for angular motion and angular misalignment. Sealmaster rod ends and spherical bearings serve the industrial market. Typical applications for rod ends and spherical plain bearings can be found in:

- Textile Equipment
- Food Processing
- Bakery Equipment
- Recreational Equipment
- Farm/Garden Machinery
- Bottling Equipment
- Printing Machinery
- Material Handling
- Mining Machinery

- Packaging Machinery
- Labeling Machinery
- Industrial Fans
- Construction Equipment
- Exercise Machines
- Dairy Machinery
- Agricultural Equipment
- Transportation Equipment
- Off-Road Equipment

Rod Ends and Spherical Plain Bearing Engineering Section

Recommended Housing Diameters - Spherical Plain Bearings

Spherical Bearings		Housing Bore (inch)				
Series	Bearing O.D.	Steel Housing		Aluminun	n Housing	
SBG, SBG-S, SBG-SS, SBG-SA	+.0000 0005	Min	Max	Min	Max	
3	.5625	.5616	.5620	.5614	.5619	
4	.6562	.6553	.6557	.6551	.6556	
5	.7500	.7491	.7495	.7489	.7494	
6	.8125	.8116	.8120	.8114	.8119	
7	.9062	.9053	.9057	.9051	.9056	
8	1.0000	.9991	.9995	.9989	.9994	
10	1.1875	1.1866	1.1870	1.1864	1.1869	
12	1.4375	1.4366	1.4370	1.4364	1.4369	
14	1.5625	1.5616	1.5620	1.5614	1.5619	
16	1.7500	1.7491	1.7495	1.7489	1.7494	
FLBG	+.0000 0005	Min	Max	Min	Max	
3	.6250	.6241	.6245	.6239	.6244	
4	.7500	.7491	.7495	.7489	.7494	
5	.8750	.8741	.8745	.8739	.8744	
6	1.0000	.9991	.9995	.9989	.9994	
7	1.1875	1.1865	1.1870	1.1863	1.1869	
8	1.3125	1.3115	1.3120	1.3113	1.3119	
10	1.5625	1.5613	1.5620	1.5611	1.5619	
12	2.2500	2.2488	2.2495	2.2486	2.2494	
16	2.3750	2.3738	2.3745	2.3736	2.3744	
СОМ	+.0000 0007	Min	Max	Min	Max	
3	.5625	.5615	.5619	.5613	.5618	
4	.6562	.6552	.6556	.6550	.6555	
5	.7500	.7490	.7494	.7488	.7493	
6	.8125	.8115	.8119	.8113	.8118	
7	.9062	.9052	.9056	.9050	.9055	
8	1.0000	.9990	.9994	.9988	.9993	
10	1.1875	1.1864	1.1869	1.1862	1.1868	
12	1.4375	1.4364	1.4369	1.4362	1.4368	
14	1.5625	1.5614	1.5619	1.5612	1.5618	
16	1.7500	1.7489	1.7494	1.7487	1.7493	

Spherical Bearings		Housing Bore (inch)				
Series	Bearing O.D.	Steel Housing		Aluminum Housing		
COR	+.0000 0005	Min	Max	Min	Max	
3	.5625	.5616	.5620	.5614	.5619	
4	.6562	.6553	.6557	.6551	.6556	
5	.7500	.7491	.7495	.7489	.7494	
6	.8125	.8116	.8120	.8114	.8119	
8	1.0000	.9991	.9995	.9989	.9994	
10	1.1875	1.1866	1.1870	1.1864	1.1869	
12	1.4375	1.4366	1.4370	1.4364	1.4369	
14	1.5625	1.5616	1.5620	1.5614	1.5619	
16	1.7500	1.7491	1.7495	1.7489	1.7494	
BTS-LS	+.0000 0007	Min	Max	Min	Max	
12	1.5000	1.4988	1.4993	1.4986	1.4992	
16	2.2500	2.2488	2.2493	2.2486	2.2492	
20	2.3750	2.3738	2.3743	2.3736	2.3742	
24	2.7500	2.7488	2.7493	2.7486	2.7492	
BH-LS	+.0000 0007	Min	Max	Min	Max	
16	2.0000	1.9988	1.9993	1.9986	1.9992	
19	2.3750	2.3738	2.3743	2.3736	2.3742	
20	2.3750	2.3738	2.3743	2.3736	2.3742	
24	2.7500	2.7488	2.7493	2.7486	2.7492	
28	3.1250	3.1238	3.1243	3.1236	2.1242	
32	3.5000	3.4988	3.4993	3.4986	3.4992	

Application Inquiry Worksheet

Company Name	Contact
Address	Phone
	Fax
	Date
I. Application	
$f \square$ Currently in use (if current application, what bearing	js are now being used?)
□ New	
Manufacturer	Manufacturer's Part No.
Your Company's Part No	Application Detail
II. Engineering Detail	
□ Rod End □ 2 pc □ Steel Race □ DELRIN Ra	ace 🛘 Spherical Bearing 🖨 3 pc 🕒 Bronze Race 🚨 TEFLON Liner
Misalignment Angle	(Degrees)
Radial Clearance	(Min/Max)
Axial Clearance	(Min/Max)
Preload Torque (lined rod ends only)	Min Max
Materials: Ball Ra	ce Housing
Protective Finish: Ball Ra	ice Housing
☐ Solid Film ☐ Race ID	☐ Ball ID ☐ Ball & Race ID ☐ Grease (specify)
III. Operating Conditions	
□ Radial	Lbs.
□ Axial	
Type: ☐ Reversing ☐ Alternating ☐ Unidirect	
Operating Speeds	
Motion	
Environmental Conditions: Dry Moisture	
Bearing Life Required	
	ions on separate sheet or attach part drawing if available.
Fax your application works	sheet to: Application Engineering 219-465-2263.
Customer Signature	Date
L- W1	in- Wi
D D H-H-H	UBRICATION C x 45° GROOVE H BOTH SIDES W W
	H LUBRICATION HOLE
) b + + + + 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 =
Female	Male Spherical
Rod End	LOCATION OF ORDINAL PRODUCTION OF BEATING GREASE A ROD END OF BEATING GREATER A ROD END OF BEATING GREA
	FITTING* A
	LUBRICATION GROOVES
- J	GROOVES →
Ball Housing Head Length Thread Thread Base	e Across Ball Misalign- Chamfer Outside Ball Race Ball Misa
B Width Width Dia. to Ctr. con Ball Length Size Dia.	Wrench Ball Flat ment Bore C Dia Width Width Dia. Angle B Ref D Width Width Dia. Angle Dia. Angle Dia
	J O a 1 10 a
Male	